
^mmmm «|IIV^np>|IMI||91IHnMiMlip*IR«IIRMI«inimpi^^PmillllMiH)llUJ IHIIIIII ^ vm'li»mvm.MM .11,11

AD-77 8 68 8

A MODEL-DEBUGGING SYSTEM

William Scott Mark

Massachusetts Institute of Technology

PM«*^^

«"•*,

Prepared for:

Office of Naval Research

April 1974

DISTRIBUTED BY:

KJUn

\

National Technical Information Service
U. S. DEPARTMENT OF COMMERCE
5285 Port Royal Road, Springfield Va. 22151

■■'- ■■"---' ■inriiBii ■ ' • ' ■■^■MiMUM* , ■,.,. .Ar,. ■larM^ilfiirii ii\im radian .„__^- ..^ i

..,■*■ PR* "J»'>< i ^"^ ti»iip qw-P, umiWi|p.|l.ii h mpill|.IIM| u^m tnw*mm**mmmv>

BIBLIOGRAPHIC DATA
SHbET

1. K. pntl Nu. 0 7.

MAC TK- 125 /
3.JKri 11.ic• n 1's ALiissimi Alp,

4. t li tl till ' i.M 11 |i

A Model-Debugging System

5. lU-pun n.m ; issued
April 1974

6.

7. Vuil . i

William Scott Mark
8. ■''criurtning Organization Rept.

Nü- MAC TR- 125
9. 1 'i ? iitftiniu-. * 'i i;.un/.u mn N.um a lit] A-l ir« . -.

Pi.OJECT MAC; MASSACHUSETTS INSTITUTE OF TECHNOLOGY:

545 Technology Square, Cambridge, Massachusetts 02139

10. Proji-i i 'Task/Work Unit No.

11. (ontract 'dram No.

N00014-70-A-O362-OOO6
12. Simiisoriii) Or,■..inl/.»um Nanif ..nJ A,l,t', ,s

Office of Naval Research
Department of the Navy
Information Systems Program
Arlington, Va 22217

13. 1 M" "I Kcport Ä: PeritKl
' Dvi-tcv : Interim
Scientific Report

14.

15. <up|ilcmi-iit.ir> N^n s

S.B. and S.M. Thesis, Department of Electrical Engineering, January 23, 1974
16. Ahstnu i s

This research discusses a program which aids the user of an automatic programming
system (APS) in the "debugging" of his model of his problem situation. In essence,
the user must make sure that he and the APS mean the same thing by the description
of the problem which the APS is to solve. The problem domain considered in this
thesis is that of "business games" (i.e., the management simulation games which are
used as a learning tool in the study of management). A language for describing
models of these games is presented. The paper then describes the program's methods
of simulating and finding bugs in models written in this language. Important aspects
of the program's problem-solving approach to debugging are its intf-nal knowledge
of "bugs" and of user intention within the model. This internal knowledge stresses
the importance of bugs arising from the interaction of submodels within the model.
Some details of the program's implementation (in the Conniver language) are discussed.
The necessity of "mod^l-debugging" in automatic programming is emphasized.

17. K' . Wuuls .in.l IWummi Analysis, 17a. Ilescriptur»

model-debugging

debugging

model-verification

automatic programming

17b. INIIMII. t- Opi-n-l iuli-ii Ti rms

17c. (csA 1 1 ; ,. MA.o.up

18. A\ .iil.il.ilnv v,iii mi m

Approved for public release;
Distribution Unlimited

19. Sn uriiv (l.isv (This
K.-purtj

i \(i.Assii II;U

21. .\o of Pages
143

20. s, , uriiy ' Uss (This

' 'l M 1 .V-.ll 1,1)

22. I'ritc-

'I Ills lOKM MAY Ml- RKI'KOMIX I I' ' tor OMM-1 .(. Iflun?-!1/?

' - — . - ..-....- | miitmfmmmmaamm

•^^""""L " l»'1" i ■ ^^^•^mmmnmm^^^m^** mmmmmm i-«tim mmammsmim^mmi

MAC TR-125

A MODEL-DEBUGGING SYSTEM

William S. Mark

This research was supported by the Advanced
Research Projects Agency of the Department
of Defense under ARPA Order No. 2095 which
was monitored by ONR Contract No. N00014-70-
A-0362-000&.

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

PROJECT MAC

D D C

"A HAY 14 1974

UuEBEüTrE

T
i

[J

CAMBRIDGE MASSACHUSETTS 02139

DISTPIBJTION STATEMENT A

Approved for public release;
Distribution UnRmited

,,,, - M^M—-, - — -- ■ -
mmmt

■i—:_ -.•_'.;;" 35SSI W«!,"«!!! «iiniS1"-,"

Page 2

A MODEL-DEBUGGING SYSTEM

by

WM 1 lam Scott Mark

Submitted to the Department of Electrical
January 21, 1971» In partial fulfillment of
for the Degrees of Bachelor of Science
Science.

Engineering on
the requirements
and Master of

ABSTRACT

This research discusses a program which aids the
user of an automatic programming system (APS) In the
"debugging" of his model of his problem situation. In
essence, the user must make sure that he and the APS mean
the same thing by the description of the problem which the
APS Is to solve. The problem domain considered In this
thesis Is that of "business games" (I.e., the management
simulation games which are used as a learning tool In the
study of management). A language for describing models of
these games Is presented. The paper then describes the
program's methods of simulating and finding bugs In models
written In this language. Important aspects of the program's
problem-solving approach to debugging are Its Internal
knowledge of "bugs" and of user Intention within the model.
This Internal knowledge stresses the Importance of bugs
arising from the Interaction of submodels within the model.
Some details of the program's Implementation (In the
Connlver language) are discussed. The necessity of
"model-debugging" In automatic progrjjmmlng Is emphasized.

THESIS SUPERVISOR: William A. Martin
TITLE: Associate Professor of Electrical Engineering

I ivvwi ■PB»WW?*WIBW«

Pare 3

ACKNOWLEDGEMENTS

Ideas and I would like to acknowledge the k^v

--Portant to" h s'th" s'^oCf/:^ IVS'" "''^ -- -
Laventhal for provld ni rr^i^ a s? ''^ to th8nk ^^

■ - ■ '- — ■■• — ^ • •'
 ^^*~**~~—

w—r-

Page k

Contents

1 Introduct ion 5
1.1 Define "define''! 6

1.1.1 What Is a model? 6
1.1.2 What Is debugging? 7

1.2 The Importance of model-debugging 8
1.2.1 Model-debugging as a universal concept 8
1.2.2 Model-debugging In automatic programming 9

1.3 Details, details ^
1.3.1 Restlctlon to the WOBG U
1.3.2 Role of the program in the thesis 18

2 Just to give you an Idea 20

3 Bugs 35

3.1 Bugs In models - 36
3.1.1 What did I do wrong? 36
3.1.2 interaction bugs 37

3.2 interaction In management systems 39
3.3 Bugs In WOBG models ^3

U How the program works '♦7
U.l The model specification language.., ,..U8
U.2 Simulation as a way of doing things 58

k.2.1 The simulator finessed 60
U.2.2 Simulation history and SIMULATiON-HISTORY 62

U.3 Goals and environments 68
k.k Debugging by problem-solving 83

k.k.l The attack 85
k.k.2 The voice of REASON 90

k.k.2.1 GOOD REASON'S 92
U.U.2.2 Basic BAD REASON'S 96
U.U.2.3 Higher-order BAD REASON'S ...103

U.U.3 The post-mortem recriminations H1*
U.5 Don't confuse me with the facts 120

5 Concl us Ions 123

Blbl iography 126

Appendix A , ^-28

Appendix B 138

■ — iii
 ^

■■*■"«' ^^»^^^^*rt»p^ mmmwwim m»mmpm*mm-*i mMimmmif.«

Page 5

1 Introduction

The purpose of this research Is to

explore a methodology for debugging certain models of real

world situations. The models considered here consist of

groups of well-defined submodels. The submodels themselves

are fairly structured; the Interaction between submodels Is

not. In this paper I will discuss a program which uses the

techniques of goal-programming to explore the Interactive

behavior of a given model. The basic Idea Is that a bug In

the model will give rise to a "problem". , The program then

tries to solve this problem In an environment defined and

constrained by the model. Those steps at which the

program's problem-solving process encounters constraints

caused by unintended interaction of submodels suggest

possible locations of bugs within the model.

To a large extent/ the problems of this

research are "artificial Intelligence" problems. Th2t Is,

the research problems Involve representation of knowledge In

a form which useful to the problem-solver, and

representation f the problem-solving process as a computer

program. The remainder of this paper will deal with one

solution of these problems for a program which debugs models

of management situations. This section will present a more

~.~ _.>... >. «MfetMMMMMn

f^wvmm^n'mm^w w^mmmmmo* i .dijjwjw .^Jrz* uiiui^y - jiiij«A.mffi|iMiVHWHjjiiiPi^m^v>i ■fwipiii ii "mmm

Page 6

complete explanation of the area of model-debugging as I see

It. The next section prov.des an overview of the whole

debugging process In the context of a detailed example.

Later sections develor some Ideas about bugs,

problem-solving, goal-programmfng, and the program Itself.

1.1 Define "define"

i.i.i mal Is. a ngde]?

f-'.arvln Mtnsky describes the concept of a

"mocel" as follows:

If a creature can answer a question
about a hypothetical experiment without actually
performing It, then It has demonstrated some
knowledge about the world. For his answer to the
question must he an encoded description of the
behavior (Inside the creature) of a sub-machine or
"model" responding to an encoded description of
the world situation described by the question.

We use the term "model" In the following
sense: to an observer B, an object A* Is a model
of an object A to the extent that B can use A* to
answer questions that Interest him about A. |12|

For the purpose of this research, the term "model" will be

used In a much less general and more concrete way.

Specifically, the program discussed here requires that the

"encoded description" be of a particular pre-defined type,

that the kinds of world-objects "A'1 to be modelled belong to

a very limited class of things, and that "P"^ questions of

 . ■_ M ._ _. -- - - - -----_-.
 — -— ■

■zmmm^^mmmmmrm m*mp***mrt. ■■■.iw««^^w« ■!■■ ■ •■» ■ " r^^mmm.i ■mi ji j. ii.iMiuiiiJiii.i!aiww^wBiiiM»i.ni U)«.illJJI*H..U. 1IM

Pape 7

Interest be sharply restricted.

After this sect?on/ the term "model"

will be used to refer to a user-defined collection of

constructs In a model specification lan^uap:e (MSL)

(presented In section U.l) which describes a "real-world"

management system. (1) For now, suffice 't to say that a

"'model" Is a user's description of his system of Interest.

That Is, the user thinks that the model describes his

system—actually, the model contains bup;s.

1.1.2 What is debugging?

When a model's performance Is not what

the user expects, we say that the model has «•k,.„" hug" (see

section 3). Ti^e process of finding what causes the

discrepancy between performance anH expectation Is called

"debugging". It Is the nature of complex processes that the

cause of a discrepancy may be related to the manifestation

of the discrepancy only through a seemingly Intricate chain

of reasoning. The purpose of this research Is to write a

program which knows the necessary kind of reasoning to go

from the manifestation to the cause of a bug.

(1)
Actually, a real-world business game.

— - -■■■■■--- —- - —

mminpvwiipiMivPv^pn^wHvnw mmmmm9m^vmmm<Jm' '■WPJI ' nf* mmummmmwrnim vH^w^^mmntm

Par.e 8

In order to Incorporate this reasoning

process/ the propram must have l-nowledse about MSL models

(see U.l), the kinds of burs that occur In MSL models (see

3.3), how these hugs manifest themselves (see k.k,2), and

how the causes are related to the manifestations (see

it.U.3). Of course, this Is In some sense the "whole story";

before launching Into It, It mlpht be a ^ood Idea to examine

our reasons for worrying about model-debugging In the first

pi ace.

1.2 Tti£ Importance Q± model-debugging

1.2.1 Model-debugging ££ a. universal CQnCEPt

The process of gaining knowledge about

the world Is a process of model formation and debugging.

The progress of all organized thought, especially science,

has often been described In this way. More recently, work

by psychologists such as Plaget and artificial Intelligence

researchers such as Seymour Papert has brought this model

formation/debugging view to bear on the entire learning

process. Certainly, no one can doubt the Importance of

studying so fundamental a process.

Of course. In this research, the

v!ewFoInt must be strictly limited. The following sections

•■ ■ ...

. .. .

■"■ ! HWI"!«!. IIJII .in.m IUPJHHHVIUI mw'PipirpwPBi

Pa^e 9

will describe a process which seems only barely related to

the grandiose exaltations of the previous paragraph. For

one thing, the extremely close Interaction between model

debugging and formation will be greatly restricted to allow

examination of the debugging process Itself. Also., the

restrictions Inherent (1) In the "show a working program"

approach of this research make the class of problems seem

trivial when compared to the overall problem of

model-debugging.

Although I could now claim that the

validity of this research effort Is that It provides an

Initial Investigation Into a very hairy area (the usual

Induction step In artificial Intelligence theses), I will

move In more practical directions. (Of course, I hope for

the higher parallels all alonp.) Specifically, I consider

the Importance of the kind of model-debugging actual 1y

presented here for the new field of automatic programming.

1.2.2 Model-debugglnp XQ automatic programmtntr

(1) These restrictions are "Inherent" at this stage of our
knowledge, at this stage of my knowledge, and In the
exigencies of churning out a Master's thesis. Certainly,
there are no Inherent restrictions In the capabll Ity of
computers to Incorporate the process.

 -—■- - - - -
..^ -■---.-.— ■■- . —-»:- ■i ■■■ i iiir —

nHMH n
Pa^e 10

Automatic prop; ramming; Is the art of

provfdlnp: a computer program (an "automatic programming

system" (APS)) which takes as Input some user-amenahle

description of a task anH produces as output computer

programs to accomplish that ♦•ask. The user's description of

his task Is his "model" In the sense described In 1.1.1.

This Is the "model" which the protram described In this

thesis must debur.

But why worry about model-debugging?

Why not let the user specify something, let the system

generate a solution program, and simply leave It to the user

to respeclfy the problem If he doesn't like the results?

There are several answers to this question, some obvious,

otherr, not so obvious. Basically, the reasons for providing

sophisticated model-debugging aids revolve around

considerations of efficient use of the APS, ease of use of

the APS, ease of construction of the APS, and "safety" In

the use of the APS.

The most obvious reason for

model-debugging Is that since code-generation (I.e.,

actually writing the solution program after the task

description Is In) Is a rather arduous process. It Is

worthwhile making sure that the user and the APS agree on

what the problem Is before the APS actual 1y writes programs

■

ii iindm iL' i'niiiiinyBiililM'iIfcr ii n ■ ii i r— ' --" ■ ■ ■ ■ ■■-"■■ MMMMMM

:-

Rape 11

to solve the problem. This idea of pre-code-^eneratFon

debugging Is as old as compilers, and Is fairly well

understood. (1)

A related but not quite so obvious

reason for providing model-debugging aids In an APS Is to

make the system easier to use. This Is especially necessary

In an APS like Protosystem I i9| which attempts to provide

problem-solving expertise to aid the user. The point Is

that the APS Is designed to provide prcblem-solvlng

knowledge for a user who Is not at all adept In computer

problem-solving. To help him design a description of his

task and then not to aid him In debugging that description

seems like providing not much help at all: descriptions of

complex problems "always" have bugs, and finding them Is

usually as sophisticated a task as writing the description

In the first place. (2) Thus, I beleve that an APS that

does not provide model-debugging aid would be difficult. If

not Impossible, to use.

Supposing, then, that some kind of

(1) The actual debugging of models may be quite different
from the debugging of source code, but the reason for doing
so Is the same In this case.

(2) Statistics have shown that about 50^ of the time In
large system development Is spent In debugging |2|.

 ■ •— --—"——-—— ^^-' -i^mim^^^lm^^^ ■ - ' ■■ - .• „-.Ma^MMMA'

^^^^^^^

PaKe 12

debuKglng a!d Fs necessary, how should It be Interfaced with

the user and with the APS? The answer, I think. Is that

debuKKlPK should occur when the system's knowledge of the

user's problem Is still at a high level of symbolic

description. That Is, prior to code generation. This

leaves the debuggln ; effort In the realm of

model-debugging. The reason that It Is Important to keep

debugging at a high symbolic level Is to keep the design of

the APS as simple as possible. It Is quite difficult to

maintain the links between mistakes which occur at low

levels of description (e.*., programs) and their high-level

causes. Certainly the user cannot be responsible for

maintaining these links. If the APS tells him that "an

Illegal reference was generated from location 11U37", We

cannot expect hin to have any notion of what went wrong with

his model description. In fact, the construction of an APS

which could make this connection between the bug's

manifestation and Its cause would be extremely difficult,

it seems much more reasonable to carry on debugging at a

high level of symbolic description which both the user and

the APS can understand In terms of the user's model.

Finally, there Is a very special problem

which arises In connection with the use of the APS. The

user begins to develon a depend^nrv on the APS and to trust

., .,._....-

Rape 13

the results of the solution prorrams. When the system 'is

more expert then the user (as Is the case In Protosystem I),

the user may even trust results which "common sense" (I.e.,

previous experience, educated guesses, etc.) tells him are

wron?;. In these circumstances. It Is of paramount

Importance that the user be sure that the APS has a correct

understanding of his model. Other than the model-deburfilng

subsystem within fhe APS, thpre may be no source of feedback

which enables the user to find out that there Is anything

wrong at all . (1)

The model-debugging facility has sole

responsibility for helping the user to understand what Is

wrong with his model In terms of the model — I.e., In the

only terms the user understands. An APS which does not

provide a facility for Interactive discussion of the model's

assumptions and their ramifications Is a dangerous tool

Indeed. Thus, the user must always have some means of

observing the effects of the assumptions In the model and

for making sure that the APS "knows what he means". The

model-debugging subsystem of the APS provides the necessary

mechanism.

Therefore, for reasons of efficiency.

(1) The output code and. In many cases, the assumptions
underlying Its generation will be Incomprehensible to the
average user.

^. i—^^. ■iMuuiiMiimiir- ■ — -

. ^.. ,. , ... - ,. ,

Rape Ik

usability, and safpty, a model-debugsInp facility Is a

necessary part of an automatic programming system. otlll,

the general problem of model-debugging In automatic

programming Is much too larre to be considered here. In

the next section, I will explain the particular subdomaln of

automatic programming I will attack, and my reasons for

choosing It.

1.3 Details, telfllls

1.3.1 Restriction to th£ WQßG

The program described In this thesis Is

specialized to work on models chosen from the "world of

business names" (WOBG). By this I mean an environment In

v/hlch the concepts common to business games are the stock

knowledge. There are several reasons for choosing this

domain of Interest: (1) the models are sufficiently

structured to be formally expressible, but are not so

structured that they are susceptible to mathematical

analysis; (2) the Interaction of submodels Is the most

Interestlnn and complex aspect of the model; (3) this Is one

of the few domains which Is both reasonable-sized and

"real-world" (In the sense that there Is a great deal of

Interest In It Independent of this research); ik) It Is a

 — ■ - MMi^MMMMHMMMWHMIIIIIIMMIlaHalMM^MMMi

Page 15

natural subdomaln of the "world of business" (WOB) of

Protosystem I |9|.

Models In various domains differ greatly

In the amount of "structure" present In the description of

the model. By "structure" I mean clearly defined rules of

construction and constraints on elements. The methods used

In this research require well-defined models. However, If

the model Is "too well-defined", debugging becomes

uninteresting, or Is more easily accomplished by

mathematical tools. The WOPG seems to have just the right

level of structure. Since the Idea of modelling business

systems Is well established, there exist a variety of

formalisms for expressing business models. These modelling

formalisms are even mo-e clearly defined for business games.

The very Idea of a game Is to have a precise set of elements

and rules for manipulating then. Nonetheless, understanding

and debugging models of business games Is by no means

trivial. There Is good ev,de,ce that users of even the

simplest of business games have very poor and "buggy" models

of what Is going on |3|,|6|,|8|. The main reason for this

Is the complexity of the Interaction between submodels In

business games.

I am particularly Interested In

debugging models In which Interaction of subparts Is a major

LL. ---■"—' ■-

mMUmil *-'■-■ -■ ■ - ■ .■-..-*-.■ ^-.I-^.:J-^.W»., .-^^^.i^^L

Pape 16

factor In model complexity. Most model-worlds which have

been Investtrated In artificial Intelligence research (e.g.,

the "blocks world" I21|) have few complex Interdependencles.

Existing Interaction problems fend to be downplayed In order

to emphasize other aspects of the models. (For example,

see WinorraH's "solution" to the "flndspace problem" In

1211; cf. |17|.) I wish to explore the other end of ihe

Interdependency scale; I.e., highly Interactive models. (1)

The kind of models which the program described In this

research Is designed to debup: are those In which the user

has a j^ood understand I np of the various parts of the model,

but doos not understand how these parts (v/hlch I will call

"submodpls") Interact with each other. (2)

in fact, äH of the bups which the

program Is designed to ^Ind arise from Interaction of

submodels (see section 3.5). Business games have very

(1) Real world situations pres
between these two extremes,
considerable amounc of space (a
examination of how Interaction
complexity factor In real world s
in large business organizations
Interdependency problems form
similar problems in the toy-worl
am hoping to motlvafe an Interest
which will preoccupy the remalnde

umably fall somewhere In
However, I will devote a

11 of section 3) to an
of submodels Is the major

Ituatlons (In particular,
), and how these real world
the "semantic roots" of
d used In this research. I
In the "Interaction bugs"

r of the thesis.

(2) I believe that this Is a large and Important class of
models. Including models of "systems" with wel1-understood
elements (see I 3|).

. ... -»... .■-..^■..t^-.^.t.- ■—-■»^■.. .^-.^.^^-■^^■^ ■ ,, ,■,, m llf^^^..^JjJ--^--JJL.^-^M«-i..iM^J,
'-'■"■■ —■—' -^ J"-j — --

Papp 17

precisely defined elements (see the examnle pame In Appendix

A). However, theje elements Interact with each other to

the extent that understandInr how the "whole system" (I.e.,

all of the Interacting, parts) works Is a major challenge to

the players. Thus, since poorly understood Interaction of

submodels Is the major source of burs In this domain, the

WOBfi forms an excellent testing ground for my program.

Business pames also have the Important

property of being Interesting in their own rlpht. Playing

and understanding business rames Is considered to be an

Important activity at many schools of management throughout

the world. There Is therefore little Hanper of being

accused of designing a program which works only In an $£, hoc

problem domain. Furthermore, since people are used to

trying to model business games for themselves, they can

appreciate the efforts of a propram which aids In the

debugging of such models. This "real world" flavor of

business games Is one of thMr most Important properties for

this research.

Finally, the UOBG Is a natural subdomaln

of the WOB of Protosystem I. This Is useful, first of all,

because It allows a certain Inheritance of philosophy and

technique from the larger project. More Importantly,

though. It enables the model-debugger presented hero to be

 ■ - -■ -—-' -■ ■■

Page 18

seen In the context of a lar^e automatic programming; system.

Since the raI son d'etre of my program Is use In an APS, this

connection with Protosystem I Is an Important aspect of the

research. +

Therefore, the basic philosophy of

model-deburglng presented here will be applied to models

chosen from the world of business games. In order to show

that my basic Ideas about debugging are Indeed "working

Ideas", I have written a program which uses these concepts

to debug actual models of business games.

1.3.2 ihs. ISLLS. ol ihs. prpgram ID. ihs. thesis

The program presented In this thesis

serves several purposes: Illustration of Important methods,

demonstration of the workability of the techniques, and

discussion of design Issues for model-debugging programs.

Certainly, the major use of the program In the thesis Is to

provide examples for the debugging theory developed In the

research. All the major debugging Ideas are Illustrated by

a scenario from the working program. As for the second use

of the program, a little care Is necessary fn explaining the

"proof" value of the program In the thesis. It Is often

contended that working programs prove the utility of the

- - - ■ - . . i i ■——■!■■■ unit

Page 19

theories that they represent. This Is true, so long as the

reader fs careful not to use some sort of false Induction

prlnclpJe to Infer too much from what the program actually

dflfii. As (s almost always the case, the program In this

thesis can actually do only a subset of what Is talked

about. I will always make It clear what the program can

and cannot do, how the program can be extended to do more,

etc. The reader should draw any general

concluslons--carefully--from this Information.

Using this "program-as-Mlustrator"

Philosophy of presentation, I will now launch Into a

detailed example of program operation on a simple model.

This will hopefully give the reader a good basic Idea of

what the rest of the thesis has to say. Th* Issues raised

In the example and the example Itself will be discussed at

length In the rest of the thesis, each aspect of the problem

appearing In Its logical section (see table of contents).

 —■ L-J^Lif-^A—J-^X^^O^^^^^L^^-

Page 20

2 iiusi. is £±^ä ^ajü an Idfia.. •

The Important thing to keep In mind

about thU program Is that It finds the causes of bugs In

much the same way that people (or Sussman's HACKER |18|) do:

by trying to solve problems—and falling. In this section I

will present the complete works of my program In connection

with a very simple example. A lot of new notation Is

presented here; please don't get bogged down In It. I

present It here only to avoid vagueness In showing what the

program actually works with. More complete explanations of

all the notation (and Indeed, the entire example) appear In

the appropriate sections later on. This discussion focuses

on what the program means by a "bug" and on some of the

procedures used to go from the manifestation to the cause of

a bug. Neither the procedures nor the descriptive

mechanisms used by the program are discussed In detail here.

Philosophical Issues about representation of knowledge In

the program and goal-programming are eschewed completely.

This Is a quick "Introduction by doing" to the methodology

of the program.

Suppose the user presents the program

with the following (tiny) model:

b. . , i- . - - ■- i J . ~ — -■•- ■ ■ - ^.1-.-. ..^-^-_.^^-.-.^..-^^^J

Consider the fo
of sales. A sale Is a probabfllst
which depends only on the amount o
done. Advertising costs $3000 per
good for one quarter. I buy th
advertising per quarter. If the money
available. Sales take place during
There Is one call per salesman per
customer never buys more than one unl
Is sold, the company records $500
receivable (A-R), which Is not col
another two quarters. At any time, a
a 504 chance of quitting. If a sale
new man Is hired. After three
training, this man becomes a sal
start making calls. Both salesmen
are paid $1000 per quarter. Trainee
S% chance of quitting at any time.

Page 21

1 lowing model
lc occurence
f advertising
page and Is
ree pages of
to do so Is
sales cal1s.
quarter. A

t. If a unit
0 In accounts
lectable for
salesman has

sman quits, a
months of

esman and may
and trainees
s also have a

The user would Input this model Into the program with the

model specification language presented In section l».l. In

these MSL terms, the model looks like:

(♦ACTIVITY HIRING

(♦PREREQUISITES (*PPESENT (1000 CASH)))
(♦SCHEDULE ON QUIT)
(♦PRIORITY 2)
(♦OUTPUT (SOME TRAINEE))
(♦TAKES 0)

(♦ACTIVITY ADVERTISING

(♦PREREQUISITES (♦PRESENT (3000 CASH)))
(♦SCHEDULE 3)
(♦TAKES 1)
(♦PRIORITY 3)
(♦OUTPUT (1 PAGE-OF-ADVERTISING))

(♦ACTIVITY TRAINING
(♦PREREQUISITES

(AND

(♦PRESENT (1000 CASH))
(♦PRESENT (SOME TRAINEE))

■■■atMaai—BkiHtaiBaaMUMMaaBta^MiaMlanUM^ riB_M-a._M__AU>-_ "- ' ■" 1

Page 22

)
(♦TAKES 3)
(♦OUTPUT (SOME SALESMAN))

)

(♦ACTIVITY SALES-CALL
(♦PREREQUISITES

(AND
(♦PRESENT (1000 CASH))
(♦PRESENT (1 UNIT))
(♦PRESENT (SOME SALESMAN))

)

)
(♦TAKES 1)

(♦ACTIVITY COLLECTION
(♦PREREOUISITES (♦PRESENT (5000 A-R)))
(♦TAKES 2)
(♦OUTPUT (5000 CASH))

)

(♦EVENT SALE
(♦CONDITIONS SALES-PROBABILITY)
(♦ACTIVITIES (SALES-CALL)

(♦OUTPUT (5000 A-R))
)

)

(♦EVENT QUITTING
(♦CONDITIONS QUITTING-PROBABILITY)
(♦ACTIVITIES (SALES-CALL)

(♦CANCEL)
(♦REMOVE (THAT SALESMAN))

)
(♦ACTIVITIES (TRAINING)

(♦CANCEL)
(♦REMOVE (THAT TRAINEE))

)
)

(♦FUNCTION SALES-PROBABILITY
(♦ARGUMENTS (PAGE-OF-ADVERTISING))
(♦RETURN ad-functlon))

)

(I will not show the exact nature of
"ad-functlon", as It Is a ♦TABLE construct (see i».l)--

 ■ -^..-- ■■■■,. ..■.■J.-..W.-J.—J...-.'. ...L.^......-. .
--■ ■ ■ ■ *

Page 23

heUre (see^p^r^ that We shou,d",t ^ry about

the following:
Now suppose the user gFves the program

(♦SIMULATE k 1
((30000 CASH)
(50 UNIT)
(DON SALESMAN)
(MARK SALESMAN)
(STEVE SALESMAN)
(BILL SALESMAN)
(.05 QUITTING-PROBABILI «-Y)))

or. In words, slmulate the modeI for H quarters. show,„g a

t.Me-sUce every quarter, and „,th the „ven .mt.al va.ues

Before cons.der.n. the actions of the pr0Rram, It |s

worthwhile to note a few things.

Frrst, observe that the the user has

.Iven the model (50 UNIT) as an Initial resource. Thts Is a

typical example of a model-testing technique: adding s,aclc

to decouple submode.s. Presumably, UNIT Is someth.ng

created by another submodel which the user does not wish to

insider at tnls time. The user effectively removes this

"other submodel" by maUng sure that the submodel Is never

H-rted by the amount of UNIT avaMable. (The PRODUCTION

submode! which creates UNIT-s Is shown In Appendix B.),

Second, note that we are making an

-•Plle.t assumption about what the user wl 11 do with the

L ..,.■...~,.... ..-^■■....■.,■.,-. -"——— — • — _MMM^MM

simulation after It Is presented by the program. We are

assuming that he win be either satisfied or dissatisfied

with the result (1) . if he Is dissatisfied, he will express

his expectation to the system In the form of a goal. This

Inltlc -s the debugging process. At this time, let us

rejoin our example. In progress.

The first action of the program Is to

simulate the model as the user requests. If the user's

expectation Is fulfilled, no further action will be taken

until the user's next request for simulation. If his

expectation Is not met, the program will help him find the

bug In the model.

The requested simulation Is shown below.

The representation used here (and throughout the thesis)

should be seen as a graphical description of the complex of

list structure which the program uses to describe simulation

histories. Every part of the diagram has an analog In the

Connlver |20| representation of the program (see section

k.2).

(1) We are also assuming that the user Is a good judee of
ThU ?. Verformance of the system he Is trying to mode?
Ihll it 0f CCTSe not 'consistent with our basic premise
that the user does not fully understand the workings of the

are5'" Wn^ ' h^ '" "T '" h,S ^ >• Rather ^ are saying that the user knows pretty well what th«. mn,4»i
should do, but Is having trouble makln^the moSerdo^h^tJ

imuMiri'-initifilliTÜiiäill
t"-t]^""' - .1^-.. -.-■—w.^ ^I.-^.,,...^.^»^

HP™ mwmm vmmmm.um. w »mmmni^mm '"»'t«n. mm WII jnwp« ii i... ■■wiiiiui,..! .jmwipjpmm i 11 UM

Page 25

♦TIME-SLICE 0*

RESOURCES:

SIMULATION-HISTORY

SALESMEN: DON, STEVE^ARK, BILL
CASH: 30000
UNITS: 50

♦TIME-SLICE 1*

SALESMEN: PON, STEVE, MARK, BILL
CASH: 17000
UNITS: i»8
A-R: 10000

SCHEDULED «ACTIVITY'S:
SALES-CALL (DON)
SALES-CALL (STEVE)
SALES-CALL (MARK)
SALES-CALL (BILL)
ADVERTISING
ADVERTISING
ADVERTISING
COLLECTION
COLLECTION

♦EVENT'S;
SALE (BILL)
SALE (DON)

(TIME-LEFT = 2)
(TIME-LEFT = 2)

♦TIME-SLICE 2*

RESOURCES:
SALESMEN: DON^MAR^BI LL
CASH: 5000
UNITS: ^7
A-R: 15000
TRAINEE: G0001

SCHEDULED ♦ACTIVITY'S:
SALES-CALL (DON)

— ——■ ■■--■■ - \ ■,t\w\ \«,*Mt ■ >-"-^- ■■■- ■■- ■ ■-■'■■■-

■■'" I" ^•^^^^^m^^^rvmnm i m >». . i irpuw .. ■-IMI,".«.VI^>.W"«UI<MIRJ"*^MM i iiijijiivupqi^iwr^llfPmnn^wt'owjMa^ipi

SALES-CALL (MARK)
SALES-CALL (BILL)
ADVERTISING
ADVERTISING
ADVERTISING
COLLECTION (TIME-LEFT » 1)
COLLECTION (TIME-LEFT « 1)
COLLECTION (TIME-LEFT = 2)
HIRING
TRAINING (TIME-LEFT = 3)

Page 26

^EVENT'S:
SALE (MARK)
QUITTING (STEVE)

♦TIME-SLICE 3*

RRESOURCES;
SALESMEN: DON,
CASH:
UNITS:
A-R:
TRAINEE: G0001

MARK, BILL
2000

10000

SCHEDULED »ACTIVITY'S:
SALES-CALL (DON)
SALES-CALL (MARK)
SALES-CALL (BILL)
ADVERTISING
ADVERTISING
ADVERTISING
COLLECTION (TIME-LEFT
COLLECTION (TIME-LEFT
TRAINING (TIME-LEFT -

*EVENT,s:

2)

2)
1)

SALE (BILL)

♦TIME-SLICE h*

RESOURCES;
SALESMEN: DON, MARK, BILL
CASH: 1000
UNITS: kS
A-R: 10000

. . .— i i - - ■ - - - ■ -

 »iw i Wim ii i !■ II

Rape 27

TRAINEE: G0001

SLQMEMkEfi *ACTIVITY'S:
SALES-CALL (DON)
SALES-CALL (MARK)
SALES-CALL (BILL)
ADVERTISING
COLLECTON (TIME-LEFT = 2)
COLLECTION (TIME-LEFT = 1)
.'RAINING (TIME-LEFT = 1)

♦EVENT'S
SALE (MARK)

The simulation has resulted In 5 SALE's.

Suppose that the user expected 6. There Is a bug In the

model--but where? Note that the model runs out of CASH In

the last quarter (and therefore cannot schedule ail three

ADVERTISING *ACTIVITY•s). However, the bug Is not "NOT

ENOUGH CASH". Rather, this effect Is symptomatic of the

bug. Most of the effort of the program Is to point out

hugs, not their symptoms. But this requires problem-solving

In the context of tne simulation history. Back to the

actual action of the program...

The user notes that there were only 5

SALE's rather than the expected 6. In order to try to

rectify things, the user gives the system

(♦GOAL (INCREASE SALE D)

The program Is now In the debugging business. It must try

- ■ -■ -- --■ ■ -

. . . —^—^-

1 mmm m..Tmmm^^m^^ i iisniiMii mie^m^^imm^^mmp m*immn ^^grjmimmim^mmmm^tmmnmi11,ij.ivwinnnniiiavnin^iipnimKwaii.i uy

Page 28

to solve the problem of Increasing the number of SALE's In

the context of the given simulation history. The places at

which It encounters dubious constraints In the simulation

environment are Its possible locations for bugs.

The program uses the model and the

simulation history to perform the requisite problem-solving

activity for each goal as It Is presented. This may be

thought of as asking two questions of the model and the

slmulatIon:

CD Why didn't you do this before?

and/ !f there Is no good reason,

(2) How could we do this?

The method of asking and receiving answers to these

questions Is best explained by continuation of the example.

The first goal (given by the user) Is

(♦GOAL (INCREASE SALE 1))

Since this goal was given by the user, the first question Is

not asked. However, the second question Is asked. How can

we Increase the number of SALE's? By examining the model

and using the logic of INCREASE (explained In section

U.i*.!), we see that one way to Increase SALE's Is to

Increase the probability of a SALE occurlng. Thus, the

system generates a new goal

 --*■•■■ —■- ■ ■ - ■■■■•- ■■■•■ -'■■-- -^ •*- 'JMM

pa ^e^l^W^^^mmm>m>" ■■■■■■■' ■» ' •m-mmmm mmmimmwm iwmm . mmm, .. wmm — m ■■.n, w i ^ Ml ■ „,,,., m,< m. ~< m< w ,..,M-1,— ..,T,^-, ■ ..^ .^, ,■„„ , ,. „ - ..—r--r-

Page 29

(♦GOAL (INCREASE SALES-PROBABILITY))

Now the program asks question number one: why wasn't

SALES-PROBABILITY higher In the first place? The program

looks at the simulation history and notes that the

SALES-PROBABIL'TY was at a low In t Ime-sHce «♦. Why Is It

so low? There was not enough ADVERTISING, the program

determines. This Is a BAD REASON: the model was

RESOURCE-LIMITED. Okay, how can we get the necessary

ADVERTISING? In order to Investigate this question, the

program generates a new goal

(♦GOAL (SCHEDULE 2 ADVERTISING k))

which means "try to schedule 2 ADVERTISING ^ACTIVITY'S In

time-slice k". (The fact that we need 2 ADVERTISING

♦ACTIVITY'S IS presumably due to the e;cact nature of

"ad-functlon", and will not be discussed here.) Again, the

program asks why the ADVERTISING ♦ACTIVITY'S were not

scheduled In the first place. The answer Is that there was

not enough CASH; still RESOURCE-LIMITED, so we pursue this

1Ine with:

(♦GOAL (INCREASE CASH 6000 l»))

By again asking the questions and forming new goals, the

program forms the following ♦GOAL line:

(♦GOAL (INCREASE CASH 6000 U))

■■ ..--..- '—'--— ■- -■-■■-liltii1Hiiiiin " '•■

Ill VW« ill Ji^^w^w*Wlllu|i,MlAT*ÄHiLM-.l' wmFm**^mmqm

Page 30

(♦GOAL (SCHEDULE 2 COLLECTION U))

(♦GOAL (ALLOW 2 SALE 2))

(♦GOAL (SCHEDULE 5 ADVERTISING 2))

("ALLOW" rather than "SCHEDULE" because SALE ts an ♦EVENT.)

Note that we are back to SCHEDULIng ADVERTISING. Are we In

some kind of loop? No, we are moving back In time.

Furthermore/ this time, when we ask why we didn't schedule

three more ADVERTISING ♦ACTIVITY'S In time-slice 2, we find

that the Ireason Is that the user told us not to (via his

♦SCHEDULE specification In the ADVERTISING ♦ACTIVITY (see

page 17)). Thus, ADVERTISING Is SCHEDULE-LIMITED !n

time-slice 2. This Is a GOOD REASON, and the program

terminates action on this line of thought. Nonetheless, It

saves Information about the terminated line. If no more

"likely" bug Is found, the program will tell the user that

his ♦SCHEDULE specification for ADVERTISING Is Insufficient

to allow the model to meet his expectations. In the

meantime, however, the program explores the model for more

likely bugs. The program does this by "backing up" (1) some

(1) This Is not automatic backup In the PLANNER sense. The
program backs up only In certain cases, and only under
program control. More Importantly, the effects of the
"backed-over" ♦GOAL's are "iindone" onlv In the context of
the simulation history. The terminated lines must be saved
for later examination by the program. This Is essential for
handling the ♦GROUP constructs discussed later In the

■■■ ^MHOBüMiMI MMS^^M^ia ~.a»a_

•™™W!BiiPJ.«fBit .i'*,, - ■•-.•^»ff"1""^"'«^1" ILM*I mpiLJ'jnP^BiliiPiW^B. J, , I. ■ipp^WW^PWWf^WWfW!'«""

Page 31

and trying a different line of attack.

In this case, the propram checks to see

If there Is another way to accomplish

(*GOAL (ALLOW 2 SALE 2))

Using Its usual questfon-asklng procedure, the program finds

the alternate 1Jne

(♦GOAL (ALLOW 2 SALE 2))

(♦GOAL (INCREASE SALES-CALL 2 2))

(♦GOAL (INCREASE SALESMAN 2 2))

(♦GOAL (SCHEDULE 2 TRAINING -1)) ???

(Note that CASH does not have to be INCREASEd In this line

because there Is already a sufficient amount to support the

new INCREASES.) The program Immediately notes that It Is

trying to schedule In negative time, and terminates the

line.

This finishes off the entire

(♦GOAL (INCREASE SALES-PROBABILITY))

Idea. But there Is still another way for the program to try

to get that extra SALE It Is looking for: by trying to

Increase the number of SALES-CALL's. Thus,

(♦GOAL (INCREASE SALE 1))

thesis, and for making final debugging recommendations (see
section k.k).

wmm**mtm*mmmmmiKi i . IMIMIIU «..(Ullllll HIIIIIIJII II

Page 32

(•GOAL (INCREASE SALES-CALL 2 k))

(♦GOAL (INCREASE SALESMAN 2 k))

(*G0AL (SCHEDULE 2 TRAINING 1))

(♦GOAL (INCREASE TRAINING 2 1))

(♦GOAL (INCREASE HIRING 2 1)>

(The choice of time-slice k for INCREASlng SALES-CALL was

not arbitrary: the program chooses a slice where It thinks

It can do the most good.) But the program cannot accomplish

this last goal. Why not? The user specifically said not to

hire until someone quits. The program then checks to see

If HIRING did In fact occur. Yes--one time-slice later.

This particular set of circumstances suggests a common

timing bug In the manager's "fIre-fIghtIng" approach to

problem solving—no action was taken until It was too late

for ft to do any good (the solution Is to anticipate

problems; more details about managers' bugs In section 3).

Since this bug arises from so specific a group of events,

the program thinks It Is a rather probable bug and gets

ready to suggest It first. It then checks to see If there

are any other ways of INCREASlng the number of SALE's.

Since there are not. It Is finished looking for bugs, and Is

now ready to suggest the bugs It knows.

As advertised, the first bug suggested

to the user Is:

.. .-— _. ..- —^—^

'<mmimmrf^'^^^^~~m~m

Page 3 3

TOOAUTECHEDULE F0R HIR,NG: DEPENDENT ON QUIT; HIRING

The user may agree that this Is the bug (I think It Is),

or ask the program to try again. The next bug suggested

ts

"BAD SENSE OF PRIORITIES: HIRING AND ADVERTISI NG

Essentially, the program suggests that It could have

gotten more ADVERTISING If HIRING did not have higher

Priority. |f the user doesn't buy thfs, the program

suggests that he simply blew the »SCHEDULE specification

on ADVERTISING:

--BAD »SCHEDULE FOR ADVERTISING: NOT ENOUGH

If the user still doesn't 1 Ike what's happening (and

since the program has suggested all of the bugs It

found), the program decides to see If the user might have

mis-specified or completely omitted a relevant part of

his model (this happens more often than you might think)

It then uses Its access to WOBG knowledge to suggest

—MISSING »ACTIVITY: FACTORING

(the user may factor accounts-receivable to provide

Instant cash) and

-MISSING »ACTIVITY: RESEARCH AND DEVELOPMENT

^^...^_„

"•-w^™ ■ ii ■.ii.i.i.Miiiin.iiii nij.i~wig»^ww^l-il— ""■ii ■Iipi

Page 31»

(the user may Increase the probability of a sale by

Improving his product).

The program goes out of the debugging

business whenever the user takes a suggestlon/ or, of

course, when Its bag of tricks Is exhausted. The user

can now fix his model or change his expectations and

re-simulate. Eventually, this process of simulation and

debugging will converge to a model that the user Is

confident that he and the APS both understand

sufficiently.

In this section I have tried to show

a complete example of what this thesis Is about. I will

now go Into an examination of the foundations of this

approach, and the techniques that allow Its

Implementation. I begin with a philosophical discussion

of bugs (yech).

■ ■■,- ' ■ '■ - -

*mvm*jm^im'^*—*n " ' ■ ■"'■'■I*""I-^I "■■l"-■^"*■■•■■■■■■'^^^^^•■^^■^P m mui |,i|W|W«.p^4UlffUU|iJ

Page 35

3 ßgfis

A bug Is something that prevents

something from behaving the way someone expects It to.

This section particularizes the notion of "bug" to a

concept which Is useful for this research. As usual, the

program only knows about a narrowed-down version of

"bug".

We will be Interested here only in

"understanding-bugs"--! .e.,, bugs that exist only in the

user's understanding of the system he wishes to model

(cf. Goldstein's "semantic bugs" |5|). This Immediately

removes from consideration "parenthesis errors" and other

"syntactic bugs" (of course, trivial syntax bugs

sometimes arise from a basic misunderstanding). Thus,

there will be no Interest whatsoever in finding bugs due

to MSL errors. In fact, no attention Is given to bugs of

any kind that arise from careless expression of the

user's knowledge In the modelling formalism.

The kinds of bugs with which the

program is concerned are those that seem to be "inherent"

In the way people understand (or misunderstand) systems.

The rest of this section will be devoted to an

examination of bugs that occur in the modelling process

HMMMOHaa. - —

wmm UUMIiW, mi., iiiujmiiiiwiiwiiLi.u.uj.iinwwilpiilpiiliHlpilRpi.'^ltmvwwu'i'

Page 36

and the features of the problem domain that cause them to

occur.

3.1 Pugg ia models

3.1.1 What did 1 da wrong?

What happens when people try to model

systems? They usually do some mumbling and

head-scratching and come out with some sort of expression

of their Ideas. In this research, the "expression" Is

required to be rather formal, but this doesn't matter

much. Next, the modeller somehow tests his lodel to see

how It performs under various conditions (just as my

system uses simulation, see section U.2). Most of the

time, the model does not perform as the modeller expects

It to--"somethIng goes wrong".

Actually, "something went wrong" at

deflne-tlme: there Is something In the definition of the

model which Is causing the unexpected behavior. I have

already mentioned the hypothesis that the user has a good

understanding of each submodel. (1) Thus, the part of

the model definition which Is In error must be a

(1) The notion of "submodel" will become much more precise
when I discuss MSL In section U.l.

-•"j-^-—-" ... ^

'-■^ BW^i-.wwww'.iiK"

Page 37

specification of submodel Interaction. The

manifestation of such a bug varies widely with the

particular bug Involved, and tends to be a detailed

matter (I.e., highly dependent on the actual

representation formalism). Therefore, I will postpone

(th discussion of this problem until after I have

described the formalism (k.k.2), and go on to an

examination of the "semantic roots" of these "Interaction

bugs".

3.1.2 Interaction b»g5

In order to understand the Idea of

Interaction between submodels. It Is helpful to view the

model as a process which defines the action of the

modelled system. Thus, the models we will txamlne here

all "do something". The model can be seen as a syster

which converts some sort of Input resources Into some

predefined outputs. (This Is, Ir fact, a very popular

view of management systems.) For the model to "do"

anything. Its submodels must Interact with each other.

That Is, the Inputs to the entire model are actually

Inputs to certain submodels which convert them Into

Intermediate quantities which are In turn Inputs to other

mmm "> •' ■'■ mi*mmm*mF* mimmmimiim'.<-1 i.iii«i..i ii"J mmmmyr^r*~m~

Page 38

submodels--and so on until the desired outputs are

obtaIned.

Via this Interaction, various

dependencies between submodels arise. The most common

Is that one submodel must wait for the completion of

another before It can begin action. (See section h.k for

a detailed account of different kinds of Interaction

between MSL submodels.) Also, submodels often share

basic resources, giving rise to conflicts between

submodels.

These dependencies and confllets

between submodels provide the environment for the

following basic "Interaction bugs":

(1) Unexpected conflict arising from competition for
shared resources

(2) Weak performance due to poor perception of
time-phased occurences

(3) Special complexity problems arising from the
concentration of (1) and (2) In "tight systems" bound
by higher-order constraints

Although I believe that these bugs have considerable

generality, I will not discuss them In the abstract.

Instead, I will mov« Immediately Into the domain of

management systems to provide a framework for discussion.

WMii i in-"--— - ■•■-■' .-.-^—^.^-- i.——^ ^.^^.—■ MMWM^Mk^MMM ' -- -' - —

"■ 111(111.1 Jl. II -1 . I ,-.,!.., .111.1.11 mm^^mmn^imm^m^^msm^mwi^s^mmsiiBmvmifmimmm

Page 39

:1on In pianaKeriient ^ygtepis

The bugs catalogued In the above

subsection arise from poor understanding of complexity.

This "complexity" Is directly Inherited by the models from

the modelled domain. As an Introduction to the Interaction

complexity of organizations In the world of business (which

form the basis for business games, the "modelled domain" of

this thesis), I will quote In full an Illustrative passage

from Galbralth |M.

There Is considerable variation In the
amount of Interdependence In organizations. The
kinds of variation can be Illustrated by
considering a large research and development
laboratory employing some 500 scientists who are
pursuing the state-of-the-art. Thusu,

w|: hale f
large number of elements and high task
uncertainty. However, there Is 1 I ttle need for
communlcatlon. All the projects are small and not
directly connected to other projects. Therefore a
schedule delay or a design change does not
directly affect other design
source of Interdependence is
groups share the same pool
facilities. Ideas, and money,
Initial resource allocations
necessary communication between
to pass on new Ideas (Allen,
Interdependence has been termed as POPlecl
(Thompson, 1966, Pp. 5U-5).

If the nature of the projects
Is changed from 250 small Independent ones to two
large ones, a different pattern of Interdependence
arises. The large projects will require
sequential designs. That Is, a device Is first
designed to determine how much power It win
require. After It Is complete, then the design of
the power source can take place. Under these
conditions, a problem encountered In the design or

groups. The only
that the design

of resources--men.
But once the

are made, the only
deslrn groups Is

1969). This type of
termed

rol liihj i i [■ ■ ii'ilimiiiiliiMi ■^-—--■■■ ■■-•- • ■ ■' ■ ■'■■ ■* -' ■•-—---'- - - - ----- ^

■WUimifflfliWWBIIPIIW^jMW.- ii U ..liP.Hfl-JJÜl-.lliJP* i..i,iiiia]jiJuiwi«iWHwp,uijM^«P!«'iniiini

Page 40

the dev Ice v/i 1 1 dir
on the power souce.
problems, the grea
that must take place

situ
grea
seco
desc
budg
cond
of n
But,
Info
regu
This
In t

at Ion
ter
nd ex
rlbed
et a
11 ion
ew 1

In
rmat I
late

I s b
he se

wh
amou
ampl

I n
nd
s o
deas
add

on
the

ecau
cond

Ich Is
nts of
e has

the
facll It
f unce
among

It Ion,
process

sched
se ther
exampl

Interrelatedness of
Increased above wh
example by the
optimization" Is pur
a highly efficient
change In the design
requires redesign of

ectly affect the group working
The greater the number- of
ter the amount of comuntcatlon
to jointly resolve problems.

The second example describes a
more complex and requires
Information processing. 1 lie

all the problems that were
first example. There must be
les allocations made under
rtalnty. There must be a flow

the technical specialties.
the second example requires

Ing and decision making to
ule of sequential activities.
e is greater Interdependence
e.
The Interdependence or

the design groups can be
at Is described In the second
degree to v/hlch "design

sued. Optimization means that
device is desired and any
of one of the components
some others.

automobl
qual 11 le
the engi
onl y a
accessor
dl f feren
amount
sIze, o
necessIt
automob i
others
design o

passenge
flexlbll
match,
large,
easily c
has pi
capabi1t
anr1 size
body.

Thi
I e en
s of
ne.
certa
les.
tial
of t
r o
ate
le.
must
f an

Act
r aut
Ity
The e
the
han^e
enty
y.
s are
But

s can
g1ne an

a car
The eng
in s 1 z

The
can h

orque.
utput
changes
These 1
be ta

automob
ual1y,
omobl1e
with

ng Ine
parts
d, and

of
Eng Ines
f reque

this n

be
d bo
depe
ine c
e of

d
andle

Cha
of
In

nterr
ken
lie.

I n
ther
rega

compa
of t
the d
exces

of
ntly
eed n

Illustrated b
dy. The ban
nd on the welg
ompartment can

engine with
rive shaft
only a II

nges in the we
the engine
the body of

elatlons and
into account I

the case
e 1 s a goo
rd to bo
r t me n t Is
he suspen
rive shaft
s torque
a variety
placed In
ot be the

o
d de
dy-e

us
slon
pro

-car
of s
the
case

y an
dl Ing
ht of
hold
Its
and

ml ted
Ight,
may
the

many
n the

f a
al of
nglne
ual 1 y

are
babl y
rylng
hapes
same

. In

■ - m - - - -- ■

UMfeMMMM^^MMUfc

, i,,w .n.mBiiLiBipiiii.i Jim ■_ i.. PffllipBB»lpi".J.4iyL.Mi,UMJMP<- lUjll.A-MiJlUfHiB

Page t»l

hlgh-perfo
the engine
constraIne
There may
automoblle
system and
the requ
situatIon,
shape and
In the
elImlnated

rmance automohMeS/ the size of
compartment Is frequently sharply

d by aerodynamics considerations.
be efforts to lighten the whole

by making parts of the drive
body as light as possible; given
Ired strengths. In such a

the flexibility In the size,
performance of the engine placed
body Is sharply reduced or

(Glennan, 1967)

Thus
Inte
flex
true
thes
for
to t
fit
less
orga
must
desc
Idea
desl
Inte
that
Inte

the
rrela
Ible,
of

e sys
the

he gr
I s st

tru
n Izat

be
rlbed
s, a
gn-re
rrela
must
rdepe

h
ted
loo

orga
terns
high
oup
111
e f
ion
capa
in

nd
desl
ted
be

nden

gh perform
system wh

seiy couple
nlzatlonal

Any chan
performanc

designing t
achieved af
or a pass
designing t
ble of hand
examples on
schedules
gn declslo
desIgn.
processed i
ce Increase

ance .-auto Is a highly
lie the passenger car Is a
d system. The same Is
subunlts which must design
ge In the engine design
e car must be communicated
he body so that an optimal
ter the change. This Is
enger car. Therefore, the
he high performance car
ling the Information flows
e and two for budgets/
and also those for all
ns deriving from the
The amount of Information
ncreases as the amount of
s.

Each of Galbraith's examples Illustrates

a kind of Interdependency between subunlts of an

organization. The first kind, pooled "interdependency .

gives rise to interaction bug (1) of the previous

subsection. That Is, when resource sharing Is present, there

Is liable to be unexpected conflict betweer subunlts trying

to use the same resources (These are the PRIORITY bugs of

the example In section 2), Galbralth next cites an example

of sequent lal Interdependency. I.e., interaction over time

L ■ ■ — —
HAaMMMtMuiHiiiaaaMiiMMaiiiiHiiMiiiMlMMai

^mmmmmm ^*m**^*mmmm*mm^~**-**^i***^^mi^immmi uim 11 ^ ""■ p—«——»—w^m

Page 42

as well as resources. Again, this second kind of

Interdependency provides an environment for the second kind

of Interaction hug: when subunlts interact over time, the

modeller is liable to mls-estlmate time-effects, thus

causing degraded performance (these are the SCHEDULE bugs of

the example in section 2). Finally, Galbralth mentions

hleher-order constraint 1nterdeoendencv. (1) Essentially,

this means that a higher-order objective, shared by a group

of subunlts, has forced a need for greater Interdependency

among the subunlts of the group. What has happened Is that

In the new "tighter" system, the pooled and sequential

Interdependency has been spread to more (sometimes al1)

members of the interactive group. This kind of

Interdependency has a direct Interpretation In the WOBG

which will be discussed in the next subsection. The third

kind of Interaction bug from section 3.1.2 of course arises

from the higher-order constraint environment. (There are no

examples of this kind of bug In the example of section 2;

higher-order constraints were deliberately kept out for the

(1)
I think that the Introduction of the "design

optimization" term here Is very unfortunate. The point Is
that the subunlts have become more interactive due to the
presence of a higher-order constraint. In this case, the
constraint happens to be that the units must Interact In
order to achieve an optimal design. However, In the next
subsection I will discuss other higher-order constraints
which cause ehe same Increase in interaction.

■ in nnm-iad'-'-11- ■ • - : " ■ •- ^ -' -'-

r—■^WtpWWWWTWPW^W^^W^i^'^^^^W^WWW——W^WWWW—i^P^^—»^^WiWIHI»»! II I i nil i »

Page U3

sake of simplicity. There will be examples of this kind of

bug later In the thesis.)

These three types of tnterdependency

form the semantic roots of the bugs considered by my

program. In the following subsection we will examine the

way these real world organizational dependencies are

modelled In the world of buslnes games.

3.3 Bugs in. WOBG models

Business games provide a laboratory for

teaching managerial decision-making. Since most Important

management decisions Involve resolving conflicts (or

possible r.onf 1 lets- In the case of planning) arising from

subunlt Interdependency, the three kinds of

Interdependences discussed In the previous section are

emphasized In many business games. And, of course, with the

three Interdependencles come the three Interaction bugs.

Pooled Interdependency arises from a

natural sharing of resources by different parts of the

game-player's "business". The business game contains a

very well-defined set of "resources" (cash- salesmen-

productIon-1Ipes- etc.) which the player must manipulate

accord ng to certain specified rules of play. (1) The basic

■■vmniMi mm mtmitimu.v ■ "^ > —~—~ ■iiip,iai»Lji>>i.i

Page kk

Idea Is to accumulate certain resources which are designated

as "assets". There are a variety of strategies for

accumulating assets (e.g., use research, do some

advertising, learn about market trends, etc.). The

Important point for us Is that the Implementation of ^a*

strategy requires manipulation of various subunlts of the

Player's "business". These subunlts share the pooled

resource of £aih. Since cg§h Is In limited supply, an

Interdependency Is set up, and conflicts arise. Poor

understanding of this pooled Interdependency gives rise to

section l.l.l's bug type (1): "unexpected conflict arising

from competition for shared resources."

A much more Interesting aspect of the

particular game I have selected Is the sequential

Interdependency among subunlts. First of all, note that

some of the activities of the subunlts are "long-term"

(research and development, training saleo personnel,

constructing additional production capacity, etc.), while

others are "short-term" (advertising, factoring accounts

receivable, hiring, etc.). Second, there Is considerable

linkage between the requirements of some activities and the

(1) This discussion Is based on the actual business game
presented In Appendix A--lt might be a good Idea to glance
over the description of the game to give yourself the flavor
of what's going on.

-^M m^-m* HMMMMfe

l^OTW^mMM*«Mi^^«^W>

Page «i5

"outputs" of others (production provides units to sell,

hiring provides employees to train, etc.). Finally, the

game contains a rather rich "possibility space" for any

given strategy If the time-scale Is long enough. That Is,

there are a variety of non-Independent ways of going about

achieving a given task over time. All of this (plus the

addition of probabilistic occurences over time) adds up to a

complex pattern of sequential dependecles, which In turn

gives rise to bug (2), "weak performance due to poor

perception of time-phased occurences".

It Is cLaracterlstlc of the game used

here (and of most other business games) that the pooled and

sequential Interdependences are frequently made more

Intense by "higher-order constraints". These constraints

arise from the activity structure of the game. The key

factor Is that various activities and functions of the

organization depend on the outputs of more thgn QQZ prior

activity (note that this was not the case In the example of

section 2, and thus this problem was avoided). I can

present a detailed account of these mutual Interdependency

relationships only after I discuss the way the game Is

modelled In MSL (I will do this In k.k). For now. It will

suffice to say that two kinds of higher-order constraints

are distinguished: the kind In which several activities (or.

■■■■-■ —-'-■—,--"

•wa rm&mmmmmm wfi^mmm&'wmmim*t!*9*i*nm**nmr0rwrmf**i*w' w^mmmi*mmmm*mmmm

mo

Page U6

re usually, chains of activities) must combine to provide

resources for another activity, and the kind In which a
>

number of activities can combine In various unstructured

ways to achieve a functionally-determined goal.

This section has been devoted to filling

In rather general background Information about the kind of

bugs tho program knows about and how these arise naturally

In real world systems. We now go on to an examination of

how the program Incorporates some knowledge about these

bugs, and how It goes about using this knowledge to debug

models.

■ - - - - --' - - "-

•v^r^^mgmmmmr^*****™1 finmmmMmw "»«WWOWBIipinHl^B^BIPWflfHfBBmBiWiPMP^P^P^

Page k7

k tism Ihs. program works

in this section 1 will present a program

which finds the kind of Interaction hugs discussed above.

An example of program operation has already been shown In

section 2. From this example, the following pattern of

program operation 's evident: the program starts with a

model represented In a special formal language; It takes

th[s model and produces a simulation of It; If the user

finds a discrepancy between his expectations of model

performance and the results of the simulation, he presents

the program with the goal cf eliminating the discrepancy.

The program then attempts, using both the model as

originally stated by the user and the results of the model's

simulation, to achieve that goal; In the course of falling

to achieve that goal (1) , the program finds features of the

model which It considers to be unintended causes of the

fa 11ure--bugs. it then suggests these bugs (in order of

"likelihood") to the user, leaving him to take the next step

(and perhaps re-lnltlate the process).

This section considers each aspect of

(1) The program should fall to achieve al
goals! (The "almost" Is due to

Imost al 1 user
goals! iThe "almost" Is due to probabilistic
considerations.) Otherwise, there was not a bug and the
simulation would have achieved the goal In the first place.

^^^ ^

1
Page kZ

this process In turn. It begins U.l) with an examination

of the model specification language, providing a firm basis

for understanding what the program does and does not know

about the user's model. Next U.2), It describes the

simulation of the model and the way the results of the

simulation are presented to the debugger. Continuing along

the dobusglng process, section U.3 deals with the way user

goals are formed and the way In which the system handles

goals. Section h.h can then talk about how the program's

deductive mechanisms pursue goals and locate bugs—the real

guts of the debugging problem. Finally, there Is a short

section (I».5) on the way the program uses real-world

knowledge In the debugging process.

Into the heart of darkness...

«♦.1 Ili£ model spec I -tcation language

In order for the program to use the

simulate-and-lnvestIgate method for debugging models, the

models must be represented In a form that Is executable (by

the simulate-) and a form that Is examlnable (by the

problem-sel\Ing routines). The model specification

language (MJL) is an attempt to combine these two necessary

forms In a s ngle language (which also purports to be fairly

 ■■■,... A...—.i.fa.i-..,-.!:—*.^^.^... __i^^a

^^ ^^^

Page ^9

user-oriented!).

MSL Is a set of simple primitives which

can be used to describe models--especlal1y business game

models (1) . An MSL specification consists of an

(unordered) collection of the three basic primitives

♦ACTIVITY, »EVENT, and »FUNCTION. The basic primitives are

further described by modifying constructs. The model

manipulates user-defined value/term pairs called "resource

variables" (e.g. (1000 CASH), (SAM SALESMAN), etc.). An

example of MSL specifications appear on pages 17-18, and In

Appendix B. This section contains a brief description of

the syntax and semantics of these MSL primitives.

The basic MSL construct Is the

♦ACTIVITY. The concept of "activity" used here Is precisely

similar to the usual business sense of the word: a

well-defined organizational task which processes some

commodities or Information that Is used by the organization

(see section 3.1.2; see also the WOB |9| for Its Information

on activities). An «ACTIVITY also corresponds to a submodel

(2) --that thing that the user is supposed to have a good

(1) No claim Is made for any "completeness" or "sufficiency"
of this set of primitives. These are simply constructs
which can be used to express my game models.

(2) We will see in a few minutes that »EVENT's and
♦FUNCTION'S are also submodels.

■ - — ■ ■naaaMMai '■ -- - -^-^^ amum

^^^^^^"

Page 50

grasp of (see 5.1.1).The *ACTIVITY specification looks like

(♦ACTIVITY <*ACTIVITY-name> <modIfIers>)

(1)

As Is usually the case, the modifiers are the nr st

Interesting part of the specification.

One modifier which Is almost always

present Is the *PREREQUISITES specification. This

construct expresses the necessary Inputs of an *ACTIVITY.

The *PREREaUISITES specification

contains an arhltrary number of

(♦PRESENT <resource varlable>)

forms grouped (Implicitly) by OR or (explicitly) by AND.

The basic Interpretation Is that the named <resource

varlable> must be present (2) for the «ACTIVITY to be

Initiated. If there is an AND specification, then (as one

would expect) all of the "AND'ed" resource variables must be

♦PRESENT. Thus, In

(1) I will use the following notation: "<" and > are
metalinguistic brackets which surround metalinguistic
statements. Everything else belongs there.

(2) Clearly, there are the obvious extensions
"♦MAY-BE-PRESENT", "MUST-BE-PRESENT", etc. I have not found
these concepts necessary to express the models I have used.
Therefore, they are not Included In the MSL, even though
their Introduction would be straightforward.

Page 51

(♦ACTIVITY SALES-CALL
(♦PREREQUISITES
(AND

(♦PRESENT (1000 CASH))
(♦PRESENT (1 UNIT))
(♦PRESENT (SOME SALESMAN))

))

there must be (1000 CASH), (1 UNIT), and (SOME SALESMAN) for

SALES-CALL to be Initiated.

Some further comment Is necessary on the

quantification mechanism of ♦PRESENT. The "SOME" In (SOME

SALESMAN) represents any name of a SALESMAN In the

model.That Is,

(♦PRESENT (SOME SALESMAN))

will be satisfied with

(MARK SALESMAN) or

(DON SALESMAN) or

(STEVE SALESMAN)

Numerical quantifications carry an Implicit "at least"

modifier. That Is,

(♦PRESENT (1000 CASH))

r immhMinlin ■■ i i n ^-,_ ^ A - ■ ■'■ ■

wll1 be satisfied with

Page 52

(10000 CASH) or

(1000 CASH)

but not (999 CASH)

The '"at least" modifier may be explicitly stated, or may be

changed to AT-MOST, as In

(♦PRESENT (1000 CASH) AT-LEAST)

(♦PRESENT (5 ERRORS) AT-^OST)

The "outputs" of an *ACTIVITY are

expressed by the *OUTPUT and »REMOVE constructs:

(♦OUTPUT <resource varlable>)

(♦REMOVE <resource varlable>)

which add or delete the named resource variable from the

model 's resources.

An ♦ACTIVITY construct may be further

described by:

(♦TAKES <nunber>)

to Indicate that If the ♦ACTIVITY Is Initiated In time-slice

Hz Its outputs do not become available until time-slice

- in !■ aMMlMJMimi—aMinlMIMIi— --—— "


~~~~m~m—~~~~~—*~°~ BT!WIWfiw<nffiP»PBill|i|!^PiiJMJUiwiyi,)uii^i(uippf^^ m 

Page 53 
n+<nMmhfrs      - 

The Purpose of thfs fs  nf —'••„. of .ACTmTyls which  t'a   7—- 
amount       of       f»m appreciable 

tfme     to    be    compJeted A       , 
modfffer, Another     ^Portant 

APRIORITY  <number>) 

aHows   the  user   to     fndfcatn 
na,cate     Preference     m     aii 

^'ources   to  ^ACT.VlTY's TK a"ocatfon    of 

VyI^     tor     the     same        ' ^   ^  SeVeraI   *ACT'VTY.s  are ne     same     resource       t-h« 

^'ve eXPnc,t   .Jn0"    -' — —— use. 

e use of an »ACTIVITY  Th.. 
that have been found   . sPecfHeat Ions en found useful so far are 

to limit the number of t-• er of t'mes an *ACTIV 
fn any time-slice. 

(»SCHEDULE <number>) 

ITY can  be scheduled 

"SCHEDULE (ON <.EVENT-name», 

t0 a"OW the schedutlng of an. «TIVITY only in th e  same 

(1)  Again,   obvlouslv     M- 

ot 

, ..-..■■■J..A..|^:.... ..^ 1L   . ym* -^■"^-"--■■-  --'j  . ■  — _■..-  



ffp-~^mmimmmmmmim**mm~' .•uimjwjit. iJIWmJlWUl^V^ffPRmpipifpmiHp i™iJiiiwiiiuiwilW.iimuiUi««« ipiijaKuiiiii iiBWlimpjiJlijBpiii.ii-iiWJWW.mwi™''11.'!-!" 

Page 5k 

time-slice as the occurence of the named *EVENT/ and 

(♦SCHEDULE (EVERY <number>)) 

to limit the scheduling of the *ACTIVITY to time-slice 

<number>/2x<number>/3x<number>/etc. 

The above modifiers, along with the 

user's ability to create resource variables and provide 

arbitrary »ACTIVITY structures, allow enough flexibility to 

express all of the «ACTIVITY'S necessary to model the game 

in Appendix A (see the model In Appendix B). There are, 

however, other kinds of submodels to be considered. 

Another basic construct (I.e., 

submodel-specifier) available to the modeller Is the «EVENT. 

This Is used to express parts of the model which are 

"outside of the system"--beyond the organization's direct 

control. These outside Influences are often modelled as 

probabilistic occurences, so that «EVENT's are usually 

associated with the probabilistic parts of the model. 

♦EVENT Is very similar to «ACTIVITY In basic syntax: 

(♦EVENT <«EVENT-name> <modIfl[ers>) 

but the modifiers are somewhat different. 

Instead of the «PREREQUISITES 

specification, a «CONDITIONS list Is stated: 

...^.-..^.-^   ■ ■■MifcBiMnin mj        r i   -   -       - . - ----- -  ---II      ■  i^lhii  i i   in in   ■   il ■■ 



ii.«ii!!iy||iMim-iiip* ■,^.1 WIM«WNmiiwi"!*«)iwuifmm utmmn*9mi*m*ijr*mimi*m*-v*'w IPI*M",*WPwi-www,.»W'^WJI• luiAJ^.ffw^ii^jw.ipiii^pi 

Page 55 

(♦CONDITIONS <boolean expression)) 

That Is, the simulator expects the body of a »CONDITIONS 

list to evaluate to "true" or "false". Usually, the body 

contains some combination (perhaps related by AMD or OR) of 

♦FUNCTION names (1) (see below). The Intent Is that the 

♦EVENT may not be Initiated unless the <boolean expression) 

evaluates to "true". 

Usually »EVENT'S affect part.cular 

♦ACTIVITY'S.The suscteptlble »ACTIVITY'S and the actions to 

be taken by the ♦EVENT are expressed within the ♦EVENT by 

the ♦ACTIVITIES modifier: 

(♦ACTIVITIES Ullst of ♦ACTIVITY-names>) <actIons>) 

If an ♦EVENT contains an »ACTIVITIES construct. It can be 

Initiated only In a time-slice In which at least one of the 

named ♦ACTIVITY'S Is  scheduled. 

One rather unusual <actIon> which can be 

taken by an ♦EVENT Is 

(1) These ♦FUNCTION'S usually express a probability with 
which the ♦EVENT occurs In a given time-slice. The 
simulator sets up a probabilistic event (no confusion, 
please!) on the related sample space to express the 
♦FUNCTION. It then calls a random number generator. If the 
value returned by the RNG falls within the defined event,the 
simulator assigns "true" to the value of that ♦FUNCTION. 

 —  — -   MMi^MMkMMMMkaMMM ■   -       -         - 



m^t^mmmme^mmmm^c*  """ mm •—■- 

Page 56 

(♦CANCEL) 

This means that the Interrupted »ACTIVITY has been 

permanently disrupted, and Is to be unscheduled. (Of 

course. It can be rescheduled later.) In all other 

respects, »EVENT's are treated just like »ACTIVITY'S. 

The final basic construct In MSL Is 

♦FUNCTION. It expresses a functional relationship between 

variables In the modpl, and. In general, accounts for 

Information flow within the model. It Is thus slightly 

different In spirit from the resource-handling »ACTIVITY'S 

and *EVENT's. Nonetheless, It shares submodel status (1) , 

and Is similar In syntax to the other two basic constructs: 

(»FUNCTION <»FUNCTION-name> <modlfIers>) 

»FUNCTION'S are not "scheduled"; rather, they are Invoked by 

being mentioned In other constructs (just as In programming 

language function calls). Thus, whenever SALES-PROBABILITY 

(see section 2) appears In the model (except In the 

»FUNCTION   definition,   of   course),    the   »FUNCTION 

(1) It Is Important to recognize that Information-handling 
activities are submodels at the same level as other 
organizational activities. Forrester stresses this point 
In |3|, and seems to use the homogeneity of basic submodels 
successfully. Of course, the uniform submodel constructs 
also lead to a gain In modelling efficiency and a lessening 
of the cognitive load of the MSL user. 

-■■-•:j — ^ ■ 



w^a^^mimummmimmmm^** wmmmmmmmm mmmmmmm^i^m^^m^m^ »1 

Pap-e   57 

SALES-PROBABILITY  will   be   Invoked. 

The analogous construct to 

»PREREQUISITES   and   *CONDITIONS   In   »FUNCTION   Is 

(♦ARGUMENTS   <argumentl>   <argument2>   ...) 

which behaves like the usual argument-list In programming 

language functions. Missing arguments cause an "error" 

which   stops   the   simulation   (1)   . 

The  analogy  to  »OUTPUT   Is 

(»RETURN  <expresslon>) 

where   <expresslon>  can  be  a  combination  of     »FUNCTION    names 

and   the  special   function-representing  constructs 

(»TABLE   (<*ARGUMENT-name>   <»RESULT-name>) 

<argument/result   palrs>) 

(»SUM  UP   (<varlab!e   ran^p))   <1Irear   factors)) 

This is about all there Is to the MSL. 

The semantics of »ACTIVITY'S and »EVENT's are developed a 

bit further In the next section. »FUNCTION'S are dealt with 

fn k.k.2.l. However, no really detailed descriptions are 

presented anywhere.     There   Is   little   point   In   It.     The     only 

InMr15   ,S/   0f  course'   the   klnd  of  bug  we're mil   Interested 
III       II C l   vT   « 

ifliydiiiti  ■^-^'■-'- .-..--...-   _...J^.-.i^.^„.J.. —--  ■—■-     -^'-* 



^ir^mw^mr ^•"^^—•p^^™» I—»»  '■'  ill I I l.ll 

Page 5 8 

purpose of presenting MSL Is to allow the reader to 

understand the examples and judge what the program does and 

does not know ahout a particular model. 

Almost all of what the program knows 

about any given model Is In the MSL specification. (It 

knows a few other things discussed In U.S.) MSL can be 

simple because the models considered are quite simple. As 

the models become more complex we expect (by conservation of 

complexity) that MSL will become more complex. The hope Is 

that MSL contains something general enough to handle some 

kinds of additional model complexity without additional 

language complexity. This "something" Is the basic 

philosophy of submodel structuring which Is reflected In the 

MSL. Thus, I have tried to emphasize this basic structure 

rather the details. In the next section we follow the 

course of the program's debugging process and examine the 

simulation of MSL models. 

4.2 SlmulatIon as ^ wav of doing things 

Simulation Is a technique for observing 

the behavior of models. In the absence of analytical and 

other "high-level" tools (like educated guesses), simulation 

Is the only way to find out wha a model "does" In any given 



"W""" m^mmmmmmm^^ wmmmmmmmmmmm 

Page 59 

situation. In the model-debup;p;lng system presented In this 

thesis, the simulator sets up the basic feedback mechanism 

between user and APS. 

At the very least, any APS should 

provide a facility for checking out model behavior with 

simulation. That Is, the user formulates his model, tests 

It via simulation, changes It If he doesn't like what he 

sees, and reslmulates. For reasons discussed In the 

Introductory section. It Is necessary to go a step further. 

The program described here attempts to aid the user In 

discovering why the model does not perform as he expects It 

to . 

Therefore, this section will concentrate 

on simulation as a way of Initiating i-he debugging process. 

This emphasis Ignores very Important Issues of presenting 

simulation results to the user. In fact. It completely 

downplays the Importance of the simulator Itself, 

concentrating only on the Interaction of the simulator and 

the deductive mechanisms of the debugging program. Thus, 

In this section I will proceed to finesse the simulator and 

move on to the more relevant problems of representing the 

knowledge gained by the simulation In such a way that It can 

be used by the debugger. 

„.. ,.-   -■-   —■.-.•...^...^.-^.i—....—- -■■»■-■ififctillM»i)iiiliii(itiiifr»iiri irf« ■fiiMiairlm 



mmm i   ..■.ii»wm«ww*ijwwipnw'<!<vpw«4».Mi j UIUHU.M 

Page  60 

If.2.1 Ili£ simulator finessed 

In this section I wfll very briefly 

describe the simulation scheme used In the program. The 

whole simulation philosophy presented here Is kind of 

strange as viewed from the standpoint of "normal" simulation 

programs. This Is due to the presence of two major design 

criteria not usually found In the area of simulation 

programming: 

(1) Adherence to the "user only knows local submodel 

Information" canon ennunclated earlier (sections 1.3.1 

and 3.1.1) 

(2) The goal of representing knowledge found by the 

simulation In such a way that It can be used by the 

debugger 

The first criterion gives rise to those funny MSL constructs 

which mysteriously appeared In the previous discussion. 

It also motivates the style of simulation described In the 

rest of this section. The second criterion determines the 

actual Implementation of the algorithm, and Is dealt with In 

the following subsection. 

In MSL, the Information pertaining to a 

- - --- — -.-■ .  ...  -. ,_-_..■■..■_..  M-M 



    wmm*^~m^~*^^*^m^m*mwmmm mi,i.iiiui miiu mjmmrmmM'ntim.vmmit mM'Vm «■  ill«!"» in UL  mill   , ill   IM   i . l.-liMl- » iiNKunnw. 

Page 61 

particular submodel Is found only In that submodel. The 

kind of "Information" varies from submodel to submodel (as 

described In k.l), but basically, the following 

specifications are necessary: 

--resources needed by the submodel 

--resources produced by the submodel, and the length of 

time necessary to produce them 

—explicit policy for the conditions  under which  the 

submodel should be activated 

The  basic operation of the simulator Is 

then straightforward.Each submodel  Is activated when  Its 

(user-specified)  explicit  pre-conditions  are  satisfied, 

provided that all of Its necessary resources are available. 

If  the user does not specify pre-condttIons (via »SCHEDULE 

and *C0NDITI0NS-see k.l),     the  submodel   is  activated 

whenever  ,ts necessary resources are available (subject to 

♦PRIORITY  restrictions,  of  course).   When   the  time 

(specified by *TAKES) for submodel activity has elapsed, the 

output  resources of the submodel (If any) be-ome available 

to the whole model.    This process of cycling through 

submodels activating  "ready" ones,  continuing  "running" 

 im ■—IIIIIB —I 



 ■ in^m^^mmmm 

Page 62 

ones/ cleaning up finished ones, and augmenting and 

depleting resources all along continues for the duration of 

the user-specified run-length. 

Now anyone who has ever glanced at the 

guts of a simulator knows that I have just finessed 

Inumerable details (as well as a few Important Points). The 

algorithm used In the program Is actually a bit more 

sophisticated and a great deal hairier than the one 

"described" above. For example, I have not even mentioned 

the rather ticklish problem of handling probabilistic 

occurences In this context, nor the design decisions for 

priority-scheduling of already-running submodels. ! am 

deliberately slufflng the details here because the simulator 

Itself Is not very Important to the thesis as a whole. It 

Is its output, the SIMULATION-HISTORY context, that I wish 

to emphasize here. 

h.1.1   Simulation history ani SIMULATION-HISTORY 

The form of the output of a simulation 

program Is always a key factor In Its usefulness. In the 

debugging system presented here. It Is an essential link 

between  the  model  and  the  deductive  mechanisms of the 

■ • •■--■■- - - - -^^—Bttmamm  - - -   ^,.^^^ 



^mmmmmmmmmmmrm mmmw^wv^m^^m^^ mtmmmmitmmmim'm iiipinp(i«in>pip>ipni«Bii«up!Pinip^inRK«*> 

Page 63 

debugger. As discussed above, much of the task of the 

simulator Is to present the knowledge gained by simulating 

the model In a form that can be used by the rest of the 

program. This Is of course the old artificial Intelligence 

task of representing knowledge In a form that can be used by 

procedural deductive mechanisms. 

The style of representation I have 

chosen for the simulation knowledge Is the Simulation 

history. Now this Is hardly start 1 Ing—s imulat Ion 

histories are frequently used to describe the behavior of 

systems. But here I wish to extend the concept somewhat. 

In my program, the simulator constructs a simulation history 

(called SIMULATION-HISTORY) which then becomes the 

PfPblenrSPlvtrm envlronm^nt of the debugger. By this I 

mean that from the point of view of the deductive mechanisms 

In the debugger, the "world" Is a simulation history; I.e., 

a sequence of facts about the model which are true at 

various times determined by the simulation. The debugger 

lives Inside this simulation history. The things that It 

knows about the "world"—the kinds of knowledge found, the 

way events are related, etc.-- are the facts and rules of 

the simulation history world (1) .  in thinking about the 

(1) Except for, as we shall see later, the facts  It  knows 
about the "real world" of business games. 

k ■---~----- — ■- - ■ ---   — ■■^■■■--—^-^ ^m^.    -  " 



- -•■— nppimpmHippffn^ii m.i.mtmttmßKi^mmmfmmmmn^^^n^^ w^m    *i>w»ai«i« jwu ■W^W^ffW?w?pr»wwrT^W!w->-^^f(|| 

Page   BU 

debugger. It Is well to keep In mind that It Is a citizen of 

the simulation history «vorld. 

Well then, let's go slumming and look 

around the simulation history world ourselves for a few 

rollicking moments. Consider some set of observational 

variables on a simulation model. Then a simulation history 

can be thought of as a recording of the "values" of these 

variables at various Instants of slmulat lon-tIrr.e. The 

Interesting questions are what observational variables 

should be used and how the record should be organized. We 

will see that these questions are Important with respect to 

thR usefulness of the simulator to the debugger. 

For the simulation to progress from one 

time Instant to the next, the simulator must have a record 

of the state of the simulation. The simulation state of 

these simple MSL models consists of four main pieces of 

informat ion: 

(1) the value of each "resource variable" (see k.l)  at 

the end of each time-slice (1) 

(2) a record of the »ACTIVITY'S which were Initiated In 

the tIme-slIce 

(1) A time-slice Is one ker-chunk of the simulator. 

■ M^k^MUMMH  --   -■ - - ■ ■ — - -  , ^ ^. *-. : w^^ 



1 IlipjII^UHWlRpH^f UlllBI 9mtammmmivmms'^^^^^r^a^rr^r« 

Page   65 

(3) a record of the «EVENT'S which occur and the 

♦ACTIVITY'S  they affect 

CO an Indication of the stage of completion of each 

"running" (I.e., previously Initiated and not yet 

complete)   »ACTIVITY and   *EVENT 

Therefore, the simulator needs these four pieces of 

Information at the end of each time-slice In order to go on 

to  the  next  tlme-sltre. 

But what does this have to do with the 

"observational variables" for the simulation history? First, 

remember that the "observer" In this case Is the deductive 

mechanism of the debugger. Now, harking back to si 1 that 

was said In sections 1 and 2 about debugging by 

problem-solving, we can see that the debugger Is usually In 

the position of trying to change the course of the 

simulation In some way (to cause some desired outcome which 

causes another desired outcome, etc... which eventually 

causes the user's desired outcome). In order to decide 

whether   It  can make  the change   (1)   It    must     know    something 

(1) Of course. It must also decide whether the user wants 
the change to be made. This part of the problem Is 
discussed   In   k.k.2. 



IWWWff^iPliPWWWWÜU'I.L. M.I    Li. . '  ' 1—— ' 

Page  66 

about the simulation. Specifically, It must know the state 

of the simulation and ways to change that state (1) . The 

ways to change the state are encoded In procedural deductive 

mechanisms to be described later (l».U,l), The state of the 

simulation can be provided by the simulation history. 

Therefore, the observational variables for the simulation 

history are just the state variables discussed above (2) . 

Well, since the simulator needs the 

values of the state variables at the end of each time-slice, 

the program need only keep track of these values In some 

useful fashion. The problem now becomes one of organizing 

the simulation history. In order ot think about such an 

organization, we can look back to section 2 and remember a 

bit more about what the deductive mechjnlsms do with the 

simulation history. 

The deductive mechanisms usually find 

themselves playing around In their little simulation history 

world In two ways: 

(1) examining a single time-slice to see whether a 

change can be made at that time 

(1) This Is Its "world knowledge" of the simulation history 
wo r 1 d. 

(2) A schematic representation of these state variables  as 
they appear In the simulation history Is found on pp. 21-23. 

 ■  -         mmimA 



Page 67 

(2) examining a large segment of the simulation to 

choose a likely time-slice for scheduling something 

new, to follow the course of an »ACTIVITY or »EVENT, to 

pursue the consequences of a proposed change, or (as we 

shall see later In this section) to handle higher-order 

constraInts 

What we need Is a good representation for facile handling of 

time-slices and (usually contiguous) groups of time-slices. 

The representation should also allow ea:ie In the bulldlng-up 

and manipulation of the whole history. 

Such a representation Is the Conniver 

Context I20|. The simulation history Is Implemented as a 

Conniver context with the unlikely moniker of 

SIMULATION-HISTORY. Each time-slice Is a laver |20| of the 

context. This Conniver Implementation Implies the following 

relation between time-slices: the simulator "grows" 

SIMULATION-HISTORY by adding on new time-slices; changes 

made to the data in a new time-slice are invisible to 

earlier time-slices, however, the status of any datum can be 

determined In any time-slice. This certainly gives us the 

record of the simulation, history that we want. Conniver 

also allows any part of the context to be regarded ?z a 

separate context. The importance of this is that the 

Content  can  then  be  used  as  the  database,  or,   more 

 —  —■-— ,..—M.. u^m*mmm^^m^**m^*i*~m -  ■ --■-     



Page 68 

precisely, as the working environment, for some set of 

programs. That Is, the programs In a given context work 

only with that fignlext as a knowledge base. Thus, we can 

see that the deductive mechanisms of the debugger can "live 

Inside" the simulation history by simply using 

SIMULATION-HISTORY as their gPp^t. Furthermore, the 

deductive mechanisms can live Inside any part of the 

simulation history which they must examine. Their world can 

be a single time-slice or a large, program-edited piece of 

the  history. 

We will  see  that this ability to live 

Inside arbitrary  pieces  of  SIMULATION-HISTORY  Is  a  key 

requlstlte  for  the deductive mechanisms of the debugger. 

For the deductive mechanisms to work, they must apply  their 

procedural!y-embedded  knowledge of how to change the course 

of  the  simulation  to  carefully chosen  parts  of  the 

simulation.   This  Is why the  simulation history and Its 

Implementation as SIMULATION-HISTORY form such an  Important 

part of the program.  In the next section, we will find that 

the   SIMULATION-HISTORY   representation  gains  further 

Importance when the debugger generates hypothetical  states 

of the simulation. 

'».S Goals and envi ronp^ptQ 

■ --■■■ ■• ■ ■■■■ ■ 



Page 69 

Throughout the thesis I have been using 

the word "goal" to describe a variety of phenomena. I have 

spoken of user goals, system goals, and submodel goals. In 

section 2 I Introduced another construct containing the word 

"goal": 

(*GOAL <strange words> <numbers> <lots of parentheses)) 

which purported to represent the various other kinds of 

goals to the program. In this section I will discuss what 

these parenthetical thlngees mean to the program. In the 

next section I will talk about how they are created and 

manipulated. Here I describe only goals miä *G0AL • s--i .e ., 

the common structural aspects of »GOAL's. 

A goal expresses a desired state. In a 

debugging context this desired state is almost always 

Inconsistent with the actual state. This Is because the 

user has found a discrepancy between reality and expectation 

and has thought of a desired state In which the discrepancy 

Is resolved. Thus, the desired state, reflecting the fixed 

discrepancy. Is Inconsistent with the actual state. In the 

program presented here, the user can ask the program to 

produce this desired state (given the model and the 

simulation history-see section 2). (1)  The request Is made 

(1) As discussed elsewhere, the program falls In Its attempt 

■ 
'-■--■■-"■■■■ -■":-■■-■ -■■■...-■■■v.i^ ... ■ ■  ■ - -..v^i 



Page 70 

via a »GOAL statement: 

(♦GOAL <achieve desired state>) 

What does It mean to "achieve the 

desired state"? The user Is asking the program to change 

the course of the simulation. The program goes about this 

by first creating a hypothetical simulation state 

(time-slice) which Includes the desired state. Then It 

attempts to make the rest of the simulation history (I.e., 

the previous time-slices) consistent with the new 

hypothetical time-slice. (1) This Is done by the creation 

of a new *G0AL 

(*GGAL <make previous time-slice consistent with new one>) 

This new *G0AL Is clearly of the fo rm 

(♦GOAL <achleve desired state>) 

and can thus be handled exactly like the user goal. The 

program can thus recurse merrily along until It cannot 

achieve a desired state--!.e., until It falls. 

Now then, let's take a closer  look at 

to produce the desired state, but this Is not Important—t^ 
the discussion of this section. 

(1)  This  "work  backwards"  methodology  Is due  to   the 
debugging philosophy of tracing a bug from Its manifestation 
back to Its cause. 

  - - -""——-  .rj.^A.^j. . ...irti^fcuinii^ - ^■^-l.-:ii.~~->--L.-^1.^tJjM.iJLvwk„i.-Ji»i]I.,.JJ._:J...^t^-ja*^ 



Page 71 

this process. Each *GCAL requests a specific change to a 

specific local environment (the t lme-sl Ice.) . Thus, each 

♦GOAL Is attempted In the context of a local constraint 

environment represented by a single time-slice of the 

simulation history. (1) If the *G0AL Is achieved. It will 

define a new environment which Is Inconsistent with the old 

time-slice (because of the changes wrought by achieving the 

*G0AL). This new environment Is then consistent with the 

user's desired state, but Inconsistent with the old 

simulation history. The program will then use this new 

local environment as a basis for defining the next desired 

state along the line toward making the whole simulation 

history consistent with the user's desired state. The 

program Is, In effect, constructing a new hypothetical 

simulation history which results In the user's desired 

state. (2) 

Thus, environments are Intimately 

related to the semantics of *GnAL's. Each *GOAL Is 

constrained  by a  pre-specIfled  part  of  the  simulation 

(1) Not quite. As we shall see In a second, multiple goals 
are achieved with respect to a local constraint environment 
consisting of several time-slices. 

(2) The next section deals with the problem of how the 
program constructs this simulation without destroying the 
original Intent of the model. Specifically, section k.h.2.1 
gives a better picture of what Is "constraining" about a 
"local constraint environment". 

 :   ,  



Page 72 

environment--that part whFch It   ic o h ft ,S suPPOSed to change.   The 
achfevement  of  a  *G0AL  r^n  M, 

UUAL  c^n  therefore  be 
transformation: 

seen as a 

^GOAL 

\m\c\ tmwmwt new w\\}\wv)mri 
';  tranSf0r™t'-   "    a     .oca,     phenomenon.       HoKever     the 

ejects of the  transformatlon are non.Iocai_      ^ ^ 

ZT the ,oca'env,ronTCnt ^ ^ " •— -t the gIoba) envIronment  smee the eve„tual goal of the 

Problem solver Is to creat* 
Create a C0"s^tent simulation history 

whrch  results  In  the  user'«;  M  ,  . 
S  deS,red  State'  the global 

environment  must  be maH*» 
rnr   , made  co^'stent  with  this  new 
inconsistent piece: 

i=zr> 

w'\m\ a\\j\fo/)WtMf ^ mtonwr      j^ sWfc 

"   ■-" - " —'—'  - ■ ■ 



Pape 73 

In order to make the global environment 

consistent, the program must trace down the effects of 

changing that local piece. In other words. It must examine 

the way .hat local piece Interacts with other pieces of the 

global environment: 

^■Oi^ In o/ie. Ii'oe      si^}^ 
But this Is exactly what we want. The user Is Incapable of 

following the Interactions of the model. If the program Is 

to help the user find the "Interaction bugs" thus created. 

It must have some mechanism for trac'ng Interactions. This 

mechanism Is the problem-solver. 

The problem-solver uses a *G0AL to 

express a global environment perturbation. It then uses the 

deductive mechanisms described In the next section to follow 

that perturbation throughout the local environment, the 

local  change  at  each  point  being determined by a *GOAL. 

-■ 



Page 7k 

When the program comes to a point where the perturbation 

cannot he continued (I.e., where a *G0AL falls). It has. In 

effect, discovered a part of the environment which cannot ^e 

EäAs. JSL conform to the user's desired environment. It has 

traced the Interaction path to Its roots--It has bracketPd 

the bug location between the user's desired simulation state 

and the user's desired constraint which gave rise to the 

Interaction (see ^,«1.3). 

Thus, *GOAL's are the vehicle for 

exploring the Interactive behavior of the model. As we have 

seen above, the use of *GOAL's In this way requires 

sophisticated manipulations of local environments. In 

order to tie down some of the concepts discussed In the 

previous paragraphs, I will now discuss some of the problems 

the program faces with respect to this environment-handling. 

First, each «GOAL must be achieved with 

respect to a local environment. That Is, the *GOAL must 

only "see" the constraints of a local environment (not the 

whole thing) (1) , and must directly affect only that local 

environment. Otherwise, the distinction between local and 

Interactive  behavior  Is  lost — there Is no such thing as a 

(1) This Is due first to the nature of the problem-solving 
process-- set up a local environment and then make the next 
local environment up the line consistent with lt"--and 
second to the debugging philosophy espoused In k.k.2.l. 

_.     _- . — ._ .     — ,««—»____ ._^___-^1^—__ MMBMMM 



Page 75 

"perturbation". 

Fortunately,  the  environment   to   be 

examined »s the SIMULATION-HISTORY  context.  We will see in 

h,k.2.1     that  the  required  local environment is (usually) 

just a TIME-SLICE of the SIMULATION-HISTORY.  The *G0AL  can 

thus be made to "see" only a local environment by making the 

required  TIME-SLICE its working environment (as in k.2)   (1) 

The  Context  structure  makes  the   relation   between 

TIME-SLICE's  evident  (I.e.,  because  each  is  a Conniver 

-UmLL),  so  that  the  distinction  between   local   and 

Interactive  constraints   is   explicit  in  the  built-in 

(Conniver)  semantics of SIMULATION-HISTORY. 

Now the »GOAL must also be made to 

affect on,y a local environment If the semantics discussed 

earlier are to be preserved. It would seem that this is 

just as easy: simply keep the TIME-SLICE In question as the 

*G0AL's working environment, and all changes will explicitly 

have the required locality. However, there is a 

complicating factor found In all searching problem-solvers: 

the problem-solver must make provisions for discarding an 

old line of attack and beginning a new one. This Is the old 

problem of backup which has been discussed extensively   In 

ÜM^L'?"'! Sül!* S0  slmple  for multiple  *G0AL'S,  as we'11 see In a second. 

i^UUUkawydtb^ 



Page 76 

i7| and |19|. 

Ths backup problem Is germane to the 

debugging process because the debugger usually attempts to 

find all possible causes of a particular discrepancy (In the 

hope that one of them Is the actual bug). Thus, It will 

follow down one line of attack, fall, and try another. It 

must therefore be ready to erase the consequences of the 

line to be discarded. But this Is a particularly hard 

problem for the debugger. Here, the tracks leading to 

failures are the key to the rest of the process. They 

cannot be simple "erased", but must be preserved In some 

form which the program can use to suggest bugs and to 

explain Its actions to the user see U.U.3). 

Furthermore, while the effects of each 

♦GOAL must be restlcted to a local envlronmet, the effects 

of a!1 the ♦GOAL's must create a new consistent environment 

(1) . Thus, the program must maintain some new environment 

which localizes the effects of the ♦GOAL's, allows a 

controlled backup with preservation of the backed-over 

Information, and which forces consistency of all affected 

environments.  Certainly, SIMULATION-HI STORY wl11 not do. 

But something like It will. The program 

again  uses a  lavered-context structure.  In each laver It 

(1) They must. In fact, create a new simulation history. 

 , , ■■ ■ - . i , - ^_ — . ;      -- :liai  niij^-----—--"■--■■■—" .., ^,. ..-■■.. . . . ■ - 



Page 7 7 

records the changes made by a *G0AL to the particular 

TIME-SLICE Involved. It then appends this new laver to 

SIMULATION-HISTORY and uses this new augmented context as 

the working environment of the debugger. Now, remembering 

the little discussion of context semantics In k.2 (or, 

referring to 1201), we see that this causes the following 

effects: 

(1) The effects of a *G0AL are certainly localized 

since they occur only In a single laver which 

corresponds to a single TIME-SLICE. 

(2) The debugger can always see a consistent 

environment by looking up the augmented 

SIMULATION-HISTORY as far as the last affected 

TIME-SLICE; the semantics of context then say that 

the data seen by the debugger Is just what was In 

SIMULATION-HISTORY before (which Is consistent via the 

simulator) except where contradicted by the parts that 

were changed by »GOAL's (which are consistent (up to 

that point) via the deductive mechanisms). 

Perhaps It Is well to Interrupt here with an explanatory 

diagram... 

    -    -   -     - -■ -    . --   ■        ■-         ^. MM>—i^fc—M—^»^ 



Page 78 

TIME-SLICE 1 

this is a 
SlMle cortM as it 

^"Wfleir olia^^        TIHE-511CE X 

sd(-GOASisfe^U 

SIMULATIO^HISTOftV 

\ 

N 

  ^—-—■—          —-——^—— ^^ 



Page 79 

which fs/ due to the semantics of  context, equivalent to: 

SIMULf\T|0K)-HISTORV 

UcWJsiH\)lATIO^ 

TIME-SLICE;^ 

TlhE-SL(CE) 

which Is certainly an easier conceptualization of what has 

gone on so far. However/ the first picture Is necessary to 

explain 



■ . •• ■ - 

Page 80 

(3) The ia^ü wh,ch record the changes made by a äGOAL 

(the dashed parts of the first picture) can be peeled 

off and saved at any time, thus restoring the contra 

to Its original condition and saving the effects of the 

*G0AL (the track toward falure) for further use 

This methodology ffUs the bill so far. Unfortunately, 

there Is one final problem which complicates this little 

Picture (you just knew there would be). 

This complication comes from an as yet 

unseen aspect of the problem-solver: multiple goals. I 

mentioned earlier (section 3) the existence of "h Igher-order 

constraint interdependencles" In the model. (This 

weird-sounding effect was conveniently kept out of the 

example In section 2.) We will see In section ....2.3 that 

higher-order Interdependency leads to multiple goals. That 

is. Instead of simple goals, the program must deal with 

constructs 1 Ike: 

(*G0AL (*AND 

C*G0AL ...) 

(*G0AL ...) 

(*G0AL ...))) 

and 

■ '■-  — —-...—.■. >-—- — 



^mmmmmmmmmtmm -""   •"•*—>'^^^mmmi*^*mmm*m^im n^iRff!iiqiPmi«amni.viuuHJKMji„i 

Pape 81 

(*GOAL (*GROUP 

(*GOAL ...) 

(*GOAL ...) 

(♦GOAL ...))) 

We'll see more about multiple goals later.  For now we  need 

only examine one aspect of their behavior. 

The  raison d'etrg of *AND and ♦GROUP Is 

the expression of the fact that their component *G0AL's are 

not Independent.  That Is, the *G0AL'S  they  contain  share 

common  resources  and  cannot  be  achieved at each other's 

expense.  (This Is how they model  interdependency.)   Thus, 

the notion  of a "local constraint environment" varies from 

the one bandied about earlier.  Here we  must  have  several 

*G0AL's  sharing  a single local environment.   Furthermore, 

because of the interdependence of the ♦GOAL's,  a  component 

*G0AL  that  has  not  yet  been completed  must  "see" the 

constraints posed  by  the completion  of  other  component 

*G0AL's.   Thus,  the  local  constraint  environment might 

cover several TIME-SLICE's. 

Clearly this hairs things up a bit. 

Nonetheless, the program must preserve the semantics of 

these constructs because they are Important effects of the 

model which give rise to their own special bugs (see 

^.2.3).  Actually, given the flexibility of contexts  the 



wfimwmiiiiimwwnW' 

■ 

Page   82 

Implementation        Is       rather     straightforward.       The     little 

schematic   of  environments   now   looks   like: 

recofcU of cl^|^ wouaW" 

qödU ^^M now otffa^ w 
W TlHE-SUCEy Ae -Vide 

5)HlUTI0KHl£T0R\ 

linkin 

^ the <>mm wuecy ^^ 

3 

5üecial *ADB or 

MiUtfilM««**« .-■^ -^ ^^-^w ■....■^J  i    imiMMMll iilMaain 



RffifnpVRipiVpBWipWIiPil.WlUt : 

Pape   83 

10 termS 0f the P'-evrous  discussion  of 
-tUrbatlons,  'ocalandglobalenvfronmen^etc_oth 

has changed except that the  "local"  onv , 
local   environments  m 

have a hairy mlcrostructure of local «n. • 
^^^^ or local environments: 

eAoifoniHe/lf 

low    may 

^uiYoniy^f 
cUfinq 

concept),   .eavmg everything as before. 

Thus'     a       '"OAL       ind.cates       a       .oca, 
Perturbat,o„. The        deduct|ve        ^^^        ^      ^^ 

ProMe.-soWer  foMow  tHroog.  the     ,nteract,ons    defIned    by 

the       model        to       carrw     fk-, 
carry     the     perturbation     throughout     the 

simulation     history     ,n     order     to 

Mroauce       a       consistent 
- ~t.   The ne)<t sect,on cons|ders these ^^^^^ 

«chan.s.s and the,r     ^eracMon    (vla     fanure)    w|th    ^ 

bug-fInders. 

^ ik^£zinz by ai^ieni-^ivL i£ 

iii   ■ an   i .. ^,-^—.... L—^. 



■ 
-—-■ ■ - n 

Page 8k 

The basic task of the program Is to 

trace a bug from its manifestation to fts source.  This  is 

done by  taking  In  the manifestation as a *G0AL to be 

achieved (as discussed earlier).   The process of achieving 

such a »GOAL Is usually called "problem-solving".  But this 

Is a rather special  use of problem-solving:  the program 

expects  to  fall  In the attempt.  In fact. It Is not until 

after a  line  of attack has  failed  that   It  becomes 

Interesting  to  the  debugger.   In this section we see how 

lines of attack are formed, how they fall, and how they are 

used after they fall. 

The  most   Important  part  of  any 

problem-solving process Is the formation of subgoals  (1) 

Section  I».!*.!  considers the methods  (those deductive 

mechanisms we've heard  so much about)  for devising new 

subgoals  In  order to achieve a goal.   This corresponds to 

asking the "how could we do this ?" question of section  2. 

But In this program, the object of the problem-solver Is not 

this  direct  attack  on  the  problem.   Instead,  the 

problem-solver must make certain  It  does  not change  the 

Intent of the user's model In trying to dsbu- It. 

Thus,   the  process cf attacking the 

riiJSPeC,Ü1|Il' ,n,,:hIs Problem-solver.  Since  subgoals are 

-b^l-fo^i^n^   the   Wh0,e  f™S  '--  '"to 

• ■ -— ■ ■ ■ - — 



:      : 
^w 

Page 85 

user's goal leads directly Into the problem of separating 

the constraints which are In the simulation history because 

of user Intent from those which are artifacts of unintended 

model operation. At certain key points In the deduction 

process, the program determines whether or not It should (In 

terms of user Intentions) make the changes required by the 

deduction. This process of assigning GOOD and BAD REASON'S 

to model action corresponds to asking the "why didn't you do 

this before?" question of section 2. In U.U.2 we examine 

this REASONIng process In terns of the philosophy of bugs 

presented In section 3. 

The REASONIng process leaves the program 

with a failed line of attack. This appears as a stream of 

♦GOAL's, annotated at each point with the BAD REASON that 

triggered further program action. The program must then 

examine the record of the proolem-sol ver to attach blame to 

the proper offending model part; I.e., to find the bug. 

This task of post-mortem recrimination Is the subject of 

U.i».3. 

^.^. 1 IliS.  attack 

Here       we     examine     the     problem-solving 

Phase  of  the  debugging  process. The     key     problem-solving 

■     . -    .      -- - -   -    --     - - -   -   - ill) ml II I    ' I1    ii I ■!< 



Hjiii! jiRpiimvi<H*ii*wi«k vm- 

Page 86 

task of  the  pro.ra.  Is  to f.nd the proper local changes 

"rou^hout the global environment which win  Uad to the 

desired change.  Since each desired change ,s represented by 

a •GOAL, the problem-solver proceeds by subgoal formation. 

The  subgoal-format Ion  parts of the 

Program (the "deductive mechanisms" mentioned earlier) are 
responsible  for  flgurIng out how one ^ ^^  ^ ^ 

brought about by another.  As an example of the «ay this 

cause-effect  knowledge  Is Procedural 1y represented In the 

Problem-solver, the INCREASE function  Is  presented here 

The explanation of how INCREASE works „II, lead us directly 

Into the REASONlng methods of k.k.Z. 

The program's main vehicle  for asking 

the "how?" question is the INCREASE .GOAL: 

(•GOAL (INCREASE (resource variable or submodel) 

<amount> <time-slice> (1) )) 

That s,     "goal:   Increase  th 
e   resource variable or  submodel 

by the specified amount in the specified time-slice." The 

user's initial .GOAL is usually of the 'NCREASE type (see 

section 2). This just means that the user's discrepancy Is 

usually    a  deff,c.?ncy of  some   resource variable   (or  lack of 

ilLllclr.t'ir-VA'tl.     ,5      "Ot       «Iven.       the heurlstlcaliy choos es  one. Program 

 - - 



""■—■ ■ ■■ ■"I >' •mm^ """" ■ 

Page 87 

the appearance of some submodel)  which  he  Is  asking the 

program to fix up. 

As we saw In section U.3, the program 

Immediately sets up a hypothetical local environment In 

which the defflclency has been rectified. Then It tries to 

deduce an earller environment which would cause the new 

desired simulation state. It does this deduction via the 

"logic of INCREASE" mentlonec In section 2. The "logic", 

briefly stated, runs as follows: 

(1) Constant quantities cannot be INCREASE'd 

(2) In order to INCREASE a quantity that Is ,3 resource 

variable which Is »OUTPUT (»REMOVE'd) by an *ArTIVITY 

or »EVENT, set up a new *G0AL to INCREASE (DECREASE) 

the number of occurences of that «ACTIVITY or »EVENT 

(3) !n order to INCREASE a quantity that Is »RETURN'ed 

by a »FUNCTION, set up a new INCREASE-FUNCTION »GOAL (1) 

U) In order to INCREASE the number of occurences of an 

»ACTIVITY,  set  up  (If necessary (2) ) a new »GOAL to 

(1) INCREASE-FUNCTION's major claim to fame is that It sets 
up »GROUP »GOAL'S. I will therefore discuss It when I talk 
about »GROUP In U.U.2.3 rather than here. For now It's okay 
to view INCREASE-fUNCTION as analogous to INCREASE applied 
to »ACT I V ITY s. 

 ————    ■ "—■— -- - ■•'-' 



I   •      I.      II. IIUII. ■MnMaaoBEa^n^iJoni^MJiii ^ mmtm'vmvm>>m«m,, 

Rape 88 

INCREASE the resources needed by that *ACTIVITY 

(5) In order to INCREASE the number of occurences of an 

»EVENT, set up a new *G0AL to INCREASE the frequency 

with which its »CONDITIONS are valid (which might 

Include a *GOAL to INCREASE the number of occurences of 

the ♦ACTIVITY'S which the *EVENT affects) 

Clearly, the Intent of this list Is to cover anything  which 

the  user  or  another  part of the program (1) might ask to 

INCREASE.  However, the rules  n the list are by no means of 

uniform character;  they differ greatly  In  their  logical 

bases. 

The first rule can be viewed as a 

"fact", or. If you will, a property of the concept 

"Increase." That Is, the first rule depends onlv on the 

concept of "Increase"—not on MSL, models, etc. The second 

rule expresses a definite property of MSL rooted In the 

semantics of ♦OUTPUT. It therefore depends not only on 

"Increase", but also on the definition of MSL. The third 

rule, which will be discussed later, depends on "Increase", 

the  definition  of MSL, and the rules of mathematics (sin ce 

(2) Some necessary  resources may already  be  present  Fn 
sufficient quantity. 

(1) Since INCREASE Is defined recursively, the  "other  part 
of the program" might be INCREASE Itself. 

MMM    ■  _  ,..  JJ^ädktM^- „.■»., ..,.-.,■.■.■:-... ^L*    .,,—^^.-i^..    ■ 



Page   89 

mathematical functions are being Increased). Again, It Is 

valid for any MSL model. The fourth and fifth rules are 

different In a very Important way. They depend not only on 

the definition of MSL and other "plvens", but also on the 

particular  model   defined   by   the  user. 

The reason for this is that the 

occurence of ♦ACTIVITY'S (and thus ♦EVENT's via the 

♦ACTIVITIES construct (see k.D) can be directly determined 

by user Intentions. These Intentions are expressed by the 

♦SCHEDULE modifier (see U.l). ^SCHEDULE is used whenever 

the modeller wishes to override the "always schedule when 

possible" default, of the simulator. It therefore determines 

the pattern of ♦ACTIVITY and *EVENT activation throughout 

the simulation. *SCHEDULE is thus the primary expression of 

the   user's  policy  for   directing  the  dynamics  of   his   model. 

The fact that the "logic of INCREASE" 

must take Into account user Intention provides the key link 

between the "how?" and "why not?" questions. In the case 

of the first three rules of INCREASE, the "how?" question Is 

perfectly well-formed. The program need only look at what 

Is to be IflCREASE'd without worrying about reasons whv It 

shouldn't be done. There are no reasons, because the rules 

are     valid     for  any case   the   program can  encounter. Thus, 

the  program can  always   go  ahead and  try     the     INCREASE.        It 

. . ——.^.■^■.-.,-..„  



Page 90 

can either fall (1) (as In the case of INCREASIng a 

constant for example) or It can set up the next subgoal 

(usually another INCREASE *G0AL)--all without worrying about 

"should" and "shouldn't". 

On the other hand, rules (k) and (5) 

must worry about "should" and "shouldn't" before setting up 

the next subgoal . Perhaps the user does not Intend for the 

INCREASE to take place. Thus, INCREASE must ask the "why 

not?" question before It proceeds. 

k.k.2 Jh&  voice fif REASON 

We saw In the previous section that the 

use of INCREASE to ask the "how?" question leads directly 

to the need for the "why not?" question. As usual, the 

program frames this question as a *G0AL. That Is, given the 

♦GOAL of INCREASIng an »ACTIVITY "A" by "m" occurences In 

TIME-SLICE "n": 

(*G0AL (INCREASE A m n)) 

(1) A fallu.e of this kind  Is automatically for a "GOOD 
REAS0N"--bee sections 2 and k.U.2.1. 

■ ■ - 
■ ■ ■ -_ .  ..     .     ...   



Page 91 

the program Immediately forms the *G0AL 

(*GOAL (SCHLDULE m A n)) 

to ascertain whether or not INCREASE should proceed. 

SCHEDULE'S job Is to examine 

SIMULATION-HISTORY and the user's model to determine why the 

change suggested by INCREASE was not originally part of 

SIMULATION-HISTORY. After all, since It presumably leads to 

the desired state, why didn't the user cause the state 

suggested by INCREASE In the first place? 

There are two kinds of reasons for the 

user's not causing the suggested state to occur Initially. 

A GOOD REASON Is that he deliberately Intends (for reasons 

best known to himself) the mode! not to allow that state. 

A BAD REASON Is that the Interaction of the submodels has 

caused a constraint which disallows the state. A BAD REASON 

Is not a bug. It simply Implies that a constraint Is due to 

submodel interaction and not user Intention. However, given 

the bug philosophy of section 3, the program treats a BAD 

REASON as "susplclous"--a cause for further Investigation. 

In this section we examine the way the 

program distinguishes GOOD REASON'S from ^D REASON'S (and 

the way It classifies BAD REASOM's). The next subsection 

discusses the program's model  of user  intent--1 .e.,  Its 

-■ _ 



Pf 

1 
Page 92 

method for discerning GOOD REASON'S. After this, we 

classify BAD REASON'S along the lines of the three 

"Interaction bugs" presented In section 3. 

U. It. 2.1 GOOD REASON'S 

At each stage of the debugging process, 

the program Is trying to change an envlronment...by using a 

resource. Inserting a new submodel/etc. In order to do 

this, the program must face the question of whether or not 

the change should (In terms of user Intentions) be made. 

Of course. It Is unreasonable to expect the user to have to 

tell the program at each step what should and should not be 

changed. In fact, given the philosophy of section 3, It Is 

very unlikely that the user could provide this Information 

If he v/anted to. Thus, the program needs some sort of 

theory of which of the constraints found In 

SIMULATION-HISTORY are user-Intended and which are there 

because of a possible bug In the model. 

Going back to sections 1.3.1 and 3, we 

recall the previous assumptions about user Intentions: the 

user has a good understanding of each submodel, but only a 

very weak understanding of how submodels Interact to achieve 

an overall goal.  Thus, the program can  assume,  at  least 

■'-'■■■■    ■     - ■   ■ - -■■    -—---..^. ..■  

  , ■ ■IMiMliliMi mi 



1 

Page   93 

temporarily, that all information In the simulation history 

which Is derived directly from user statements about an 

Individual submodel Is user-Intended. All other Information 

Is necessarily the result of submodel Interaction and Is 

therefore suspect. The programming task is to interpret 

this simple theory (1) of user intention In terms of the 

deductive  mechanisms  and  SIMULATION-HISTORY. 

Everything In an MSL specification 

pertains only to a specific submodel; this. In fact, was a 

design criterion (see k.l). Thus, everything so far Is 

user-intended, by our principle of locality. But this Is 

only stat Ic information. Once the model i:> simulated, some 

of this static local Information gives rise to interaction 

between submodels. The question then becomes one of 

determlng how locality is preserved in the dynamic behavior 

of       the       model. That is, what's local about 

SIMULATION-HISTORY? 

According to U.3, the answer seems to be 

that     the     TIME-SLICE     Is     used     by     the  program as  a   "local 

(1) This theory Is of course quite liberal in its suggestion 
of "suspect11 constraints. At this stage, this seems to be 
the best strategy. The deductive mechanisms are capable of 
eliminating non-bugs rather easily so that things don't blow 
up (see section 2). However, If really large models were 
used, a better theory would be necessary to avoid smothering 
the   program with  possible   leads   (see   section   I4.5). 

    1.1,1,1, —r.  ' — 



mwm ...... 

Page 9k 

environment"...but why? The TIME-SLICE preserves locality 

because direct user policy Is at the TIMF-SLICE level. 

SchedulIng decisions set certain »ACTIVITY'S to occur In 

certain TIME-SLICE's (see description of *SCHEDULE In k.l). 

»PREREQUISITES are checked at the TIME-SLICE level, »OUTPUT 

occurs at the TIME-SLICE level, »FUNCTION'S are called, 

»EVENT'S trlggered^tc—all at the TIME-SLICE level. All 

of the direct user decisions, as specified by the static 

information in the MSL, affect the simulation at the 

TIME-SLICE level. Therefore, the program takes a constraint 

to be local (and thus user-Intended) if It depends only on 

what happens In a single TIME-SLICE. 

Now I mentioned in 1.3.1 that the models 

used In this thesis are especially interactive. 

Furthermore, as I said above, the criteria for suggesting 

unintended constraints can afford to be liberal--we would 

rather suggest wrong bugs than miss a possible bug. Thus, 

we would expect there to be few local "user-Intended" 

constraints and many non-local "suspect" constraints. This 

Is Indeed the case. The resources present in any TIME-SLICE 

are dependent on the action of the model over many 

TIME-SLICE's and are thus non-local. Similarly, the timing 

of »ACTIVITY'S which do not contain »SCHEDULE specifications 

becomes  resource-dependent  and  thus non-local.    »EVENT 

fe^^^^^^^MMMMM 



^^^^w«^l^^l 

Page  95 

occurences are specified by probabilistic functions of 

resources and are thus non-local. Finally, higher-order 

constraints like coincident presence of several resources 

span several TIME-SLICE*! (see i*.3) and are, almost by 

definition, non-local. These non-local constraints give 

rise to the BAD-REASON«s discussed In the next two 

subsections.        For  now,   let's mention   the   few GOOD     REASON'S 

that  exist. 

Most  GOOD  REASON'S concern constraints 

that arise  from ♦SCHEDULE constructs.   If  the  change 

requested  by   INCREASE  would  violate  the  »ACTIVITY'S 

•SCHEDULE for that TIME-SLICE, SCHEDULE denies  the  request 

for  GOOD-REASON  (1) . Thus, If, as In section 2, there are 

three ADVERTISING «ACTIVITY'S already  In a  TIME-SLICE  and 

ADVERTISING contains the modifier 

(♦SCHEDULE 3) 

SCHEDULE will deny a.^y request to up the amount of 

ADVLRTISING In that TIME-SLICE. Similarly, SCHEDULE views 

the   other   avatars   of  «SCHEDULE   (see  k.l)       as 

GOOD-REASON-generators. 

The other kinds  of  GOOD  REASON'S  are 

(1) There Is one exception to this which will  be discussed 

In the next subsect!on. 

—  



■ 

Page 96 

those that are based on "fact" or are "true by definition" 

(see the first three tules of INCREASE In it.»*.l). Thus, 

SCHEDULE will deny attempts to schedule In negative time. 

Increase constants, etc. for GOOD REASON. Actually, these 

REASON'S can be viewed as being based on the "common sense 

knowledge" the user has In addition to his knowledge about 

submodels. That Is, the user directly Intends nls model to 

be "sensible" as well as to be In accordance with known 

subrodel constraints. 

Thus, GOOD REASON'S apply to constraints 

which depend only on single TIME-SLICE Information, I.e., 

which reflect the locality which Is characteristic of user 

Intention. We now go on to Investigate the way In which the 

program deals with non-local constraints. 

U.U.2. 2 Basic BAD REASON'S 

If the program cannot find a GOOD REASON 

for a constraint. It must attribute Its existence to a BAD 

REASON. From the "Interaction bug" philosophy of section 3 

we see that the user's understanding of his model falters In 

the three critical areas mentioned at the beginning of tnls 

sect ion: 



Page 97 

(1) the effects of resource competftion among submodels 

(2) timing effects of submodels 

(3) the effects of higher-order constraints 

If a constraint Is there for no GOOD REASON, the program 

considers the possibility that the constraint arose 

unintentionally from one of these three misunderstandings, 

it will therefore try to come up with a BAD REASON for the 

constraint's existence so that It can Inform the debugger of 

the possible anomaly (see  section k.k.5). This  section 

will consider the BAD REASON'S related to the first two 

kinds of Interaction. These BAD REASON'S form the basis for 

BAD REASON'S arising from hIpher-order Interdependencies--as 

discussed in t». a . 2 . 3 . Mow, to continue with our favorite 

process, the SCHEDULE *G0AL was just seeing why the desired 

•ACTIVITY wasn't scheduled In that TIME-SLICE In the first 

place... 

Since the user didn't specifically ask 

for the ^ACTIVITY not to be scheduled, there can be only two 

reasons why the »ACTIVITY wasn't there: 

(1) some of Its prerequisite resources weren't present 



Pa^e 98 

(2) It Is dependent on an *EVENT that didn't occur 

Thus, the program first checks out the resource situation In 

the TIME-SLICE. If the resources are not sufficient to 

support the ♦ACTIVITY, there can be two reasons why: 

. 

(1) the resources were available In the TIME-SLICE but 

were used-up by higher-priority «ACTIVITY'S before the 

♦ACTIVITY In question got a chance at them 

(2) the resources just ain't there 

To check out the first possibility, the program looks at the 

status of the higher-priority «ACTIVITY'S In the TIME-SLICE. 

If any of these «ACTIVITY'S Indeed "stole" resources which 

would have allowed scheduling of the desired «ACTIVITY, 

their names are collected and the BAD REASON 

(PRIORITY-RESOURCE-BOUNn (<names of offending «ACTIVITY'sM) 

Is recorded. 

If no higher-priority «ACTIVITY'S stole 

the resources, then the resources must just have been absent 

from the TIME-SLICE In the first place. The ubiquitous 

two possible reasons: 

mmimmmtiammmm 



Rape 99 

(1) The •ACTIVITY'S which »OUTPUT the desired resources 

weren't scheduled until It was too late for the 

resources to be available In the TIME-SLICE 

(2) The »ACTIVITY^ which »OUTPUT the desired resources 

were scheduled too early aid the resources were 

gobbled up by higher-priority »ACTIVITY'S In the 

Intervening TIME-SLICE's 

Of course. In either Instance, the user nay have Intended 

this to be the case (well we know how to check that out...). 

On the other hand, the »OUTPUT »ACTIVITY'S nay have ended up 

In the wrong place because of the user's poor understanding 

of timing effects (1) --a BAD REASON. To determine which Is 

the case, the program proceeds as follows. It first finds 

out what »ACTIVITY'S »OUTPUT the desired resources and 

checks to see If they were scheduled too late to do the 

desired »ACTIVITY any good. Then, It sees whether the 

»OUTPUT »ACTIVITY'S were "late" for GOOD REASON. If not. It 

notes a BAD REASON: 

(1) Note that the "Interaction Information" about timing Is 
Implicit In the resources. That !s, there are no explicit 
timer-alarms to say when something Is too late or too early. 
The only evidence of a timing error In the model will be 
found In the levels of particular resources over time. 



Page 100 

(RESOURCE-BOUND (TOO LATE (<names 

of offending «ACTIVITY's>))) 

If there are no "late"' »ACTIVITY'S, or If the »ACTIVITY'S 

were late for GOOD REASON, the program looks back up the 

SIMULATION-HISTORY for two things: »ACTIVITY'S which »OUTPUT 

the needed resources scheduled "too early" for no GOOD 

REASON and "Interloping" »ACTIVITY'S of higher priority 

which stole the needed resources. If both of these things 

exist, the program notes: 

(RESOURCE-BOUND (TOO-EARLY (<names of offending »ACTIVITY'S) 

(<names of Interloping »ACTIVITY'S)))) 

Thrs, the PRIORITY-RESOURCE-BOUND and 

RESOURCE-BOUND BAD REASON'S take care of the case In which 

the »ACTIVITY cannot be scheduled because of a lack of 

prerequisite resources (1) . This leaves the o'.ner case In 

which  the  »ACTIVITY could  not be scheduled because It Is 

(1) As discussed previously, the prograi would try to 
alleviate this def.Iclency with an appropriate INCREASE 
»GOAL. The reason for this Is to make sure that the program 
traces through the entire Interaction path: after all, this 
resource defflclency could just be the result of an earlier 
decision which reflects the actual bug. More on this In 
«♦.«♦.3. 



Pape 101 

dependent on an ♦EVENT that didn't occur. 

The proRram can  easily  recognize  this 

second case because It can only arise from the 

(♦SCHEDULE (ON <*EVENT-name> )) 

specification  (see k.l).        If the specified *EVENT did not 

occur in the TIME-SLICE, the desired ^ACTIVITY could not  be 

scheduled.   Now,  if  the  program were acting uke it did 

before. It wou^d try to find out  "why"  the  *EVENT didn't 

take  place   In   the  TIME-SLICE.    However,   this  Is 

inappropriate  for  «EVENT's,  which,  after   all,  model 

occurences which  are beyond the modeller's direct control. 

Of course, this raises the question of why a modeller would 

make an »ACTIVITY dependent on ar *EVENT In the first place. 

Indeed,  the program becomes suspicious: it is possible that 

because of the user's poor understanding of tlm'ng effects, 

the  »EVENT  dependency  (plus  the  time  needed by  the 

•ACTIVITY) will cause the »ACTIVITY to take  effect  at  the 

wrong time-  .tally too late (1) .   The program checks out 

s     the 
he event 

ill   Th!1
m?sf  common  cause  of  this  »EVENT-dependency 

f Ire-f Ightl: g     approach   to  solving  problems:   when  t 
occurs,     start     doing   something  ..bout   It.   (This   Is,   in  fact] 
nnnm?? Sr    "   ^  exa?ip,e  of  section   2:   HIRING   Is  dependent 
on  QUITTING.)       Note   that   this   BAD   REASON   Is      the     exception 
efer^H     ,f     ^HEDULE     saVs     »f.     okay,    11' s  okay" Xium referred  to earl ler. 

__j 



Page 102 

this possibility by looking up and down SIMULATION-HISTORY 

to see If the ♦ACTIVITY was scheduled "too late" or "too 

early". If either of these Is whe case, the program notes a 

BAD RCASON: 

(*EVENT-TRIGGLRED-SCHIJULE <offendlng »ACTIVITY) 

<"T00 LATE" or "TOO EARLY")) 

If neither of these Is the case, the program simply 

terminates Its line of attack (1) on 

(*EVFNT-TPIGGERED-SCHEDULE) 

ard goes away mumbling to Itself (actually,  this  would be 

the first "GOOD REASON" It looks at after all the BAD 

REASON'S were checked by the debugger). 

Well,  this wraps  up  the  "bas'c BAP 

REASON'S*1  arising  from poor  understanding  of  resource 

conflict and timing effects.   Now we  go on  to  see how 

misunderstanding of higher-order constraints leads to the 

use of these same BAD REASON'S In an expanded context. 

(1) Note that unlike the other BAD REASON'S, this one causes 
the line of attack to termlnate--no further Investigation Is 
possible (see U.U.3). 



Pa^e   103 

«♦.u.2.5 Hlgher-grcier M2. REASON'S 

Up u.itll now (except for part of U. 3), I 

have over-sfmplIf led the Interactive behavior of submodels 

for the purposes of discussion. Specifically, I have 

pretended that a submodel can depend on only one other 

submodo! for Its sources of Input. Thus, my »ACTIVITY'S 

havö had only one unfilled *PREREQUISITE, my *FUNCT!0N's 

only one »ARGUMENT. This Is of course quite unrealistic, 

and not a real restriction of MSL. In this section I remove 

this artificial restriction. 

The Introduction of multiple dependency 

brings up the issue of hipher-order constraints. As we saw 

in U.3, when submodels depend on several other submodels for 

input, the pr:blem-solver must take into account the 

Interrelationship of the input *ACTmr"s. The Input 

♦ACTIVITY'S are in fact operating under a "higher-order 

constraint" (see section 3.2)--they must combine to provide 

resources for a single »ACTIVITY (or »FUMCT.JN) at a certain 

time . This higher-order constraint is modelled by forcing 

the Input »ACTIVITY'S to share a local constraint 

environment (see U.3). That Is, all »ACTIVITY'S sharing a 

higher-order constraint must be scheduled not only in 

accordance with their own needs, but also with the needs of 

■■ ■ - _ 

(mi, ■^M mamm 



Page 10k 

the ♦ACTIVITY or »FUNCTION fchtt Hepends on them. There are 

two ivpes of environment-sharing reflected by two types of 

♦GOAL's to handle the higher-order dependencies. The first 

of these Is *AND/ the expression of the way »ACTIVITY'S 

depend on each other when their higher-order constraint Is 

another »ACTIVITY. The second is ♦GROUP, which mcdels the 

♦ACTIVITY-^FUNCTICN dependency. 

♦AND  dependency arises from ♦ACTIVITY'S 

that look 1 Ike 

(♦ACTIVITY SALES-CALL 
(PREREQUISITES 

(♦AND 
(♦PRESENT (1000 CA^H)) 
(♦PRESENT (1 UNIT)) 

SALESMAN)),, """^ (S0ME 

That Is, SALES-CALL depends on the submodels which ♦OUTPUT 

CASH^UNIT, and SALESMAN. Mi of these ♦OUTPUT'S must be 

present at once (I.e., In the same TIME-SLICE). Thus, any 

♦GOAL which tries to schedule a new SALES-CALL ♦ACTIVITY 

must tnke this Into account. Specifically, If the resources 

are not available, ^H of the ♦OUTPUT ♦ACTIVITY'S Involved 

must be scheduled.  That Is, given thd ♦GOAL 

(♦GOAL (INCREASE SALES-CALL m n)) 

Mi 



Page   105 

and  assuming none  of  the  necessary   resources  are  on  hand   (1) 

,   the   program must  generate   the   subgoal 

(♦GOAL 
(*AND 

)) 

(♦GOAL (INCREASE CASH j n)) 
(♦GOAL (INCREASE UNIT k n)) 
(♦GOAL (INCREASE SALESMAN 1 n)) 

Now, just as before, the program must be 

careful not to INCREASE things contrary to the intentions of 

the user. Again, It uses the SCHEDULE ♦GOAL to find out the 

REASON for constraints. However, the SCHEDULE ♦GOAL cannot 

simply checV out each INCREASE ♦GOAL Independently as 

before. The INCREASE ♦GOAL's are now interdependent and 

must be treoted as such. So now, finding GOOD and BAD 

REASON'«; Is a whole new game. 

Mot really. Fortunately, the process 

Isn't very different, especially In the case of ♦AND. First 

of all, examination of the whole GOOD REASON-fIndlng 

philosophy and Implementation will show that It Is 

completely unaffected by higher-order interdependencles. 

This Is almost by definition: GOOD REASON'S pertain to 

Individual submodels and  TIME-SLICE's,  while  higher-order 

(I) In section 2 I kept higher-order constraints out of the 
picture by buffering away dependencies. Thus, In the case 
of SALE^-CALL, all resources except SALESMAN were available 
already (see section 2). 



 I 

Page   106 

Interdependencles     transcend     these     boundaries  of   locality. 

Thus,   SCHEDULE'S   GOOD     REASONfnR     processes     are     still      the 

same.        Certainly,     however,   the   BAD   REASONIng   Is   different. 

But   most  of  the  differences   have  been   taken  care  of     alr^dv 

by     the     environment-sharing   discussed   In   ^.3.     That   Is,   the 

effects  of  higher-order  constraints    on     resource     conflicts 

and     time  dependencies  are   already   reflected   In   the  way  *AND 

*G0AL's    are     set       up       and       processed-the       higher-order 

Interdependency        Is     already     modelled.       For     example.      If 

satisfying  one  component   *nOAL   steals   resources   from  another 

or   disturbs   the   tlmHg  of  another,     the     shared    environment 

will   make   this   Interaction  explicit:   the   resources  needed  by 

each     ♦GOAL     are     recorded   separately  so  that   the  effects  of 

everything  done   in   the   »AND   environment   can  be   traced   to   the 

proper  source. 

All   this   Is   saying  that  all   SCHEDULE  has 

to  do  about   *AND's   Is   to   realize   that     It     Is     In     a     shared 

environment     and    attribute     BAD     REASON'S   to  the  effects  of 

sharing.     Thus,   the   searches   for  higher-priority  »ACTIVITY'S 

and   timing  problems  which  were   previously  carried     out     only 

In   a   single   TIME-SLICE  ore   now carried  out   In   the  whole   »AND 

environment.     The   "new"   BAD   REASON'S   they  generate   look   like 

(PRIORITY-RESOURCE-BOUND   (<names  of  offendlne 
*ACTIVITY's>)   *AND-M0DE) g 

(RESOURCE-BOUND   (TOO-EARLY   (<names 
of  offending   »ACTIVITY's>) 

MBMH 



I"" ■ ■ 

Page 107 

♦AND-MODE (<names of fnterloplng ♦ACTIVITY'S 
!n the *AND environment)) (<names of other 

Interloping *ACTIVITY's))) 

etc. 

The theme here I that most of the work 

for finding higher-order BAD-REASON's In the »AND case was 

done by setting up the *'AND environment In the first place. 

That Is, the Interdependency Is already explicitly modelled 

by the way *AND «GOAL's work, and need only be checked 

through by SCHEDULE to find the appropriate BAD REASON'S. 

This theme Is elaborated for the *GR0UP case. 

In U.U.l I postponed the Issue of 

INCREASIng ♦FUNCTION'S by attributing this task to a 

separate INCREASE-FUNCTION *G0AL-type. The job of 

INCREASE-FUNCTION Is to flgu.e out a way to Increase the 

value »RETURN'ed by a »FUNCTION hy changing the values of 

Its «ARGUMENTS (thus. It Is completely analogous to 

INCREASE). Obviously, this problem Is extremely difficult 

for a large class of functions. Fortunately, the functions 

needed In business games, and. Indeed, In most of business 

processing, are of a very simple nature (1) .  MSL currently 

(1) The mathematics of management science--!.e., mathematics 
meant to model systems and declslons--can be quite 
sophisticated, but this Is not business processing. Indeed, 
even In a business game, the probability-handling can get 
tricky.  But all of this Is built  Into MSL--the  user can 

— 



Pape 108 

allows the representation of only two kinds of functional 

dependencies: tables and linear functions of a few 

variables. The mathematical techniques for Increasing these 

♦FUNCTION'S are simple and arc not of Interest here. The 

Interesting part of »FUNCTION'S for this discussion Is they 

are responsible for the second kind- of higher-order 

Interdependency. 

l.'e  just  saw how  the relation between 

♦PREREQUISITES and »OdTPUT's  causes  *AND  Interdependency. 

Similarly«  the  relation  between »ARGUMENTS and »RETURN'ed 

value causes »GROUP Interdepency.   In tne  »AND  case,  the 

Interdependency was that iü »PREREQUISITES must be present 

In the proper quantities In  a  single  TIME-SLICE  for  the 

»ACTIVITY  to  be  Initiated.   »GROUP  Interdependency  Is 

weaker.  We know only that some combination Q±     change«,  to 

the  components  will  bring about the desired change to the 

higher-order constraint.   That  Is,   each   subgoal   can 

contribute an  unspecified  amount  to  the  success of the 

overall »GOAL.  Perhaps the Increase  of  only  one  of  the 

»ARGUMENT  resources will suffice to increase the »RETURN'ed 

value.  Or, all may be necessary-making the »GROUP an  »AND 

at the extreme. 

Now  the program must model this kind of 

only  define  simple  functions which  use  the probability 
machinery. 



T^ 

Page 109 

Interdependency when It tries to INCREASE »FUNCTION'S. 

Furthermore, In trying to solve the INCREASE-FUNCTION 

problem. It must go about the task pretty much the same way 

organizations do In order to run Into the same kind of 

Interactive behavior. That Is, th3 Interaction involved In 

a kind of breadth-first approach to the problem (Increase 

each »ARGUMENT resource a little In turn until the 

♦RETURN'ed value has been IMCREASE'd the desired amount) 

causes very different subgoal Interaction than, say, a 

depth-first approach (Increase each »ARGUMENT as much as 

possible separately to see how much It helpi. to INCREASE the 

•FUNCTION). The differences are In which subgoals are 

allowed to be achieved at the expense of others (1) , the 

range of subgoals tried, and the extent to which each 

subgoal Is exercised (2) . Clearly, different 

Interdependencles are tapped by different subgoal attack 

methods. 

So the program must try to overcome  the 

(1) Unlike »AND, this Is allowed because not all »GROUP'ed 
subgoals must be achieved. The only requirement Is that all 
of the subgoals which eventual 1v succeed must share the same 
local constraint environment (otherwise the construct 
doesn't model higher-order Interdependency). 

(2) Note that this need to model the organization's 
problem-solving method was not present In the »AND case. 
Since all subgoals must be achieved as stated, no 
"resource-stealing" Is allowed among them and all of them 
must be fully tried and executed. 

mmm^m^m^mmmmmmj 



• ' ■ • ■'" 

Page 110 

higher-order      constraint     of     Increasing     a 

functionally-determined value the same way organizations do. 

Obviously, this Is a tall order.  First of  all,  functional 

relationships  are  usually  implicit  In organizations, not 

explicit as in MSL--SO It's hard to see  what  organizations 

do  about  them.   Second,  it  Is reasonable to assume that 

different organizations attack different functional problems 

In different ways  at  different  times.    Finally,  It  Is 

possible  that  the actual process is not pre-defined ar all 

In many cases, but is Instead made-cp  and  modified  during 

the  course of each problem's solution.  What I am trying to 

say by all of this Is that I'm not about to solve the  whole 

problem or even a very hip part of it... 

What I have done is to program a single, 

slightly sophisticated method of attacking higher-order 

functional constraints which attempts to model one way in 

which an organization might do it. It should be seen as an 

experiment for demonstrating the approach of the program In 

dealing with this kind of constraint, not a fully developed 

piece of the system. This part of the program. Incorporated 

in INCREASE-FUNCTION, works as follows: given a *G0AL of the 

form 

(*G0AL 
(♦GROUP 

(♦GOAL   (INCREASE   argumentl   timel)) 
(♦GOAL   (INCREASE   argument2   tlme2)) 



Page 111 

)) 

the program takes the first •GOAL 

(♦GOAL (INCRFASE argumentl tfmel)) 

and tries to INCREASE argumentl the minimum possible  amount 

as  a "feaslblllry study".  It carries the *GOAL a]]   the way 

to completion. If It can.   If  the  *G0AL  Is  unsuccessful 

(for  GOOD  REASON), It Is wlthdrwan from the -GROUP and the 

program does a "feasibility study" on the next *G0AL In  th« 

♦GROUP.   If no "feasibility study" Is successful, the whole 

♦GROUP naturally falls.  Now, If any of  the  "studies"  are 

successful, the program will keep attacking the studied lint 

until   It   falls.   When  this  happens.  I.e.,  when  the 

particular  ♦ARGUMENT  has  been  INCREASE'd  as  much  as 

possible,  the  program considers Itself to have a "partial 

success".  That Is, the effect o* the  INCREASE'd  ♦ARGUMENT 

Is  now calculated Into the overall «GROUP «GOAL, so that a 

new ♦GROUP »GOAL Is formed such that 

(1) The fully INCREASE'd «GOAL  Is  no  longer  In  the 

♦GROUP 

(2)   The overall  ♦GOAL  Is  reduced  by  the  amount 

contributed by the successfully INCREASE'd ♦GOAL 



Page 112 

,n this B^ -GRO'JP  environment,  the  other  •GOAL».  If 

similarly processed until success (or failure) occurs. 

All of this hopefully goes toward 

modelling the way an organization attacks this kind of 

problem: by checking out and eilminadng possibilities one 

by one, and pushing winning lines as far as possible to 

achieve the overall *G0AL. As Intimated In U.3, the process 

Is modelled (like *AMD) by the proper sharing of 

environments. Obviously, the environment-hackery for 

♦GROUP'S is a bit morn complicated than for *AND (for 

example. It must Incorporate the notion of "partial success" 

and the fact that all the eventually successful »GOAL's and 

only the eventually successful »GOAL's share the same local 

constraint environment). The question for us here Is how 

this affects the GOOD and BAD REASONlng process. 

Again, the answer is "not all that 

much". As with the *AND case, the only difference Is that 

the BAD REASON'S differentiate between constraints caused by 

higher-order interaction and those caused by other kinds of 

interaction. This ?s again just a matter of tracing through 

the explicit relationships set up In the ♦GOAL's environment 

structure. As far as actual BAD REASON'S for constraints 

go, »GROUP only adds two (minor) new wrinkles. First of 

all. It will make a special notation If the constraint comes 



Rape 113 

up during a feasibility trial. Second, It carefully notes 

which *Gn0UP »GOAL'S have already succeeded when the 

constraint comes up. These are just convenience factors 

which the bup.-flnder uses when surpestin^ »GROUP bugs to the 

user; it wants to make clear exactly what the propram was 

doing when it ran into the constraint. This is Important, 

because, as mentioned above, different Interaction occurs 

depending on exactly what the program does. 

This brings up a final important point. 

•GROUP BAD REASON'S are perhaps the weakest In the REASON 

repertoire because they depend directly on the actual 

exploration methods used. That is, the program might 

suggest a CAD REASON which the user may never really 

encounter because of the way his organization handles 

functional dependencies. Thus, the debugger saves 

*GROUP-type hugs for last. Nonethelt .s, I think that It Is 

very Important to Include this kind of REASONIng In the 

debugger: ♦GROUP-style dependencies are pervasive In 

organizations. Furthermore, they point the way toward 

modelling more sophisticated kinds of submodel-submodel 

Interactions . The weakness of the »GROUP method In this 

program is Its incompleteness, not I'. s basic concept. 

This section has catalogued all  of  the 

BAD  REASON'S  generated by the program.  Now we finally get 

- - 



Page 11U 

around to finishing the bug story bv  showing  how  the  BAD 

REASON'S are used to suggest the actual model bugs. 

k.k.l  Jhs.  post-mortem recriminations 

So far, the debugger ha* been left with 

a bunch of GOOD and BAD REASON'S for constraints. It Is now 

time to turn these Into bug suggestions. So, let's see what 

the REASON'S mean to the debugger. If the problem-solver Is 

faced with a BAD REASON for a constraint. It knows that the 

constra'nt Is based on submodel Interaction. Its job Is to 

explore that Interaction. Therefore, when SCHEDULE returns 

a BAD REASON, the problem-solver considers It a cause for 

further Investigation. In this way. It carries the 

perturbation as far as It can--traclng the Interaction 

patterns to their roots. 

GOOD REASON'S are the "roots" that stop 

this search through the interaction path. They Imply that 

the constraint blocking the path Is not due to Interaction, 

but rather to direct user Intent. fhe program should not 

disturb user Intent, since Its only purpose In changing the 

environment Is to debug the existing model. It now has a 

GOOD REASON to stop changing the environment, so  It  stops. 



Pape 115 

Its current line of attack Is said to "fall" (In Its attempt 

to brlnr, about the desired change). Thus, the 

problem-solver's activities leave a line of »GOAL's attached 

to BAD REASON'S ending In a ♦dOAL attached to a GOOD RtASON 

(1) . Now what does all o^ this have to do with debuRKInp? 

Simply this: the program has now tried to overcome every 

Interaction-based constraint In the way of producing the 

user's desired state. It has reached a user-desired 

constraint which Is the root cause of a'. 1 of the 

Interaction-based constraints. Therefore, It has reached 

the end of the line and cannot produce lh£. user's desl red 

state. There can be three reasons for this state of 

affa Irs: 

(1) The user's desired state Is off-base: he has set 
the model an Impossible task 

(2) One of the user's original Intentions Is wrong; 
I.e., one of the root constraints Is the bug 

(3) One or more of the Interaction-based constra'nts 
between the root constraints and the desired state are 
Incorrect: the model has an Interaction bug 

It Is obvious from what has been said before that the 

program thinks that possibility (3) is the most likely. It 

therefore suggests that one or more of the interactive 

constraints  (noted  by BAD REASON's) are caused by the bug. 

(1) Except for the *EVENT-TRIGGERED-SCHEDULE case  discussed 
In U.l».2.3. 



Page   116 

That fs, given that the Interaction constraints are v/rongly 

causing the discrepancy, the debugger's job Is to find the 

part of the model which slves rise to the faulty 

constraints. This Is then suggested as the "bug" In the 

user's model. If the user doesn't agree with any of the 

program's suggestions based on possibility (3), the program 

falls back on (2), and finally (1). Anyway, let's pick up 

the process again at the posslbllty (3) suggestion phase. 

The program now has the location of the 

bug bracketed between the beginning and end of a "line of 

attack". Furthermore, the submodels which could have caused 

the bug have been narrowed down to a relatively small 1 

"Interaction group" (the union of all submodels mentioned In 

the  bracket)  (1)  .    The  program must now pick out the 

(1) The size of the "bracket" and "Interaction group" of 
course depends on the model. However, In the experience I 
have had, the relevant groups have been small: a few BAD 
REASON'S and thus slightly more possible submodels. In the 
case of higher-order stuff, the proup gets somewhat larger. 
There Is no reason to expect brackets or Interaction groups 
to get much larger for larger models: the key factor In 
determining their size Is the amount of control the user 
exercises over his model (In MSL, the extent to which things 
are determined by »SCHEDULE'S). Control means GOOD REASON'S 
and thus short paths between Initial manifestations of a 
discrepancy and GOOD REASON'S to close the bracket. Control 
also means smaller groups of submodels which can affect the 
timing and resource-allocation of other submodels. Since 
managers (and modellers) exert considerable control over 
their systems, the amunt of uncontrolled Interaction 
possible In any realistic model Is probably quite 
reasonable-cIzed. This In turn means that brackets and 
Interaction groups should also stay reasonable-sized. 



Pape 117 

submodels !n the "rroup" which caused the BAD constraints In 

the "bracket" 

Sometimes this is quite easy: all of the 

BAD REASON'S are traceable to a single suhmouel Interaction. 

Examples of this are the »EVENT which triggers an »ACTIVITY 

at the wrong tine, the »ACTIVITY which constantly steals 

resources from other necessary »ACTIVITY'S, and the 

»ACTIVITY which Is always too late (too early) to allow 

another »ACTIVITY to be Initiated on time. The program 

looks for these single-cause Interactions by scanning the 

BAD REASON'S In the bracket, looking fo. "give-away" BAD 

REASON'S like »EVENT-DEPENDENT-SCHEDULE or consistencies In 

the "offending »ACTIVITY'S1' and "Interloping »ACTIVITY'S" 

listings. If, In the process of examining the bracket, the 

debugger finds a single such cause for the BAD REASON'S of 

the bracket. It Immediately labels the faulty Interaction 

(I.e., the submodels Involved In the interaction) as the bug 

for that bracket, and files It away. Often, however. In 

looking at the BAD REASON'S of a bracket, the program finds 

that a particular BAD REASON could have been caused by any 

of several Interactions. For example, »ACTIVITY A couldn't 

be scheduled because B stole Its resources, or because C 

caused D to be late so that D couldn't provide the necessary 

resources for A.   The program handles this by noting each 

 ^. 



Page 113 

cause sep- rately as a bug. 

Sometimes thl^ straJghtforward process 

breaks down: the program Is unable to pick out the causg for 

the BAD constraints of a bracket (this happens mostly In 

♦ AMD's and (especially) *GR0UP,s). Currently, th.' program 

simply presents the troublesome bracket to the user telling 

him that "there's something wrong In there". I consider 

this an Incomplete part cf the program (see k.5). 

When the program has found the bug (or 

the few bugs) for each bracket. It presents them to the user 

In order of "likelihood". The debugger's model of the 

likelihood that a suggested bug Is actually a bug In the 

model Is 

(1) The more snecIfIc the suggested bug, the more 

likely It Is that It Is genuine; thus, bugs like 

♦ EVENT-DEPEK'DENT-SCHEDULE which correspond to a single 

BAD Interaction are suggested first. 

(2) The more definite a suggested bug, the more likely 

It Is; I.e., brackets which contain a single possible 

bug are suggested before those with multiple bugs, 

which are In turn before those which are just brackets 

with the "something's wrong" tag. 



P.?ge 119 

(3) The mcr« inceractfons encompassed by a single bug, 

the more likely It Is; this Is just a recursive 

application of Murphy's law...the more Interaction 

decisions a user has to make, the more he'll blow-thus 

♦AND bugs (1) and long timing chain bugs (A was late 

for B was late for C was...) come early. 

(I») Timing bugs are more likely than resource-conflict 

bugs; PRIORITY determinations are much closer to local 

specifications/ and are thus more likely to be 

user-intended than the multJ-TIME-SLICE machinations of 

a timing bug. 

(5) ♦GROUP bugs are saved for last. 

(6) After all of the bugs due to Interactlor are gone, 

the program works on the second possibility stated 

above—I.e., It starts suggesting that the GOOD 

constraints are faulty (I.e., wrong ♦SCHEDULE 

specification, etc.); It starts with the 

♦EVENT-DEPENDENT-^SCHEDULE GOOD REASON If It's 

v^round--11' s suspicious. 

(1) ♦GROUP bugs would be here too, except, as I mentioned In 
i».U.2.3, for the fact the mechanism for handling them Is 
rather dubious. 

■   



PaRe 120 

(7) The program suKgestn mfsslnß submodels (see k.S). 

Thus, the proRram goes through Jts suggestion repertoire bug 

by bug, providing the user with an orderly statement of what 

the program thinks might be wrong with the model (see 

section 2 for the format of the suggestions). The user can 

always ask to see the Interaction path leading to a bug, the 

bracket of a bug, and any other bugs which pertain to a 

particular bracket. 

If the user does not agree with ary of 

the bugs suggested, the program will suggest possibility 

(1): that his original *G0AL was wrong. If the user Is 

still unsatisfied after all this work, the program Informs 

him as to the location of his head and logs him out. 

U.5 Don't confuse rn£ with the fj ^li 

Most of the program's knowledge about 

models Is contained In Its conceptions of MSL (Including, 

for example. Its Ideas of how to INCREASE MSL quantities) 

and Its notions of user Intention—as discussed In k.k. 

However, as I mentioned In section 2, It Is useful from a 

debugging point of "lew to Include actual "world" knowledge 

of business games. Clearly, this knowledge can be used to 

suggest bugs which transcend the MSL specification. 

MM« 



Page 121 

This Is, In fact, the only use the 

current program has for WOBG knowledge. As shown In section 

1, the program has a facility for suggesting "missing" parts 

of an MSL specification. This comes from a (very simple) 

model of what an MSL model of a huslness game (1) coul d 

contain. The program simply checks at various points to 

see whether the addition of an *ACTIVITY could solve some 

problem (usually alleviate some defflclency) In the user's 

model Thus, when there Is a lack of CASH In the sample run 

In section 1, the program notes that the addition of a 

FACTORING *ACTIVITY (see description In Appendix A and 

specification In Appendix B) could solve the problem. 

While this sort of thing Is certainly 

useful. It Is only a "zeroeth order" attempt at using world 

knowledge In debugging. A more Important use of WOBG 

knowledge would be to aid In finding bugs within the MSL 

specification (I.e., the same kind of bugs the program now 

finds). As I mentioned In «t.U, a major determine»" of the 

efficacy of the debugging program Is the number and slie of 

the "brackets" which enclose possible bugs. In the current 

program, brackets are determined by the amount of 

uncontrolled Interactlon--I.e., a purely MSL-level 

criterion.   In  a more  thorough-going  approach,   WOBG 

(1^ In fact. It Is based entirely on the game In Appendix A, 

■MMMMMMMMMHa 



Page 122 

knowledge could be used to determine which Interactions are 

reaily natural and which are possible bugs (1) --thus 

limiting or even eliminating brackets. Also, WOBG knowledge 

could be used to suggest suspiciously specified ♦ACTIVITY'S, 

etc. 

The main reason that I have not 

exploited WOBG knowledge in these more sophisticated ways Is 

that It has not been necessary for the models I have 

Investigated so far. Furthermore, It Is Interesting to see 

how far a "domaIn-Independent" (2) debugger can go toward 

finding bugs in MSL models. Thus, WOBG knowledge does not 

enter Into the main bug-finding process at all. Its sole 

use Is In suggesting the addition of »ACTIVITY'S to the 

current model (3) . 

(1) This sort of thing Is actually found to some degree In 
the programs of Sussman |18| and Goldstein |5|. 

HACKERe|18|SrTian,S diSCUSS'0n of the  doma In-Independence  of 

(5) It operates off a WOBG database which will not be 
described here. It works a lot like MAPL |10|, and was In 
fact designed to be compatible with the larger MAPL database 
of PrctosysLem I (the WOB |9|). 

   



*       

Page 123 

5 Concluston«; 

I would like to use this concluding 

section to fit my model-debugging system Into the "bfg 

picture", viewing It First as a debugging tool, and second 

as part of an automatic programming system. 

The approach of my debugging system 

should be seen as one method of the several which can be 

used by the human or machine problem-solver. The 

slmulate-and-lnvestlgate technique shown here Is useful for 

debugging poorly understood but easily modelled systems. It 

requires the modeller's knowledge and lack of knowledge to 

be of a certain charactfer, as outlined earlier. It Is also 

most useful for handling highly Interactive systems. If the 

problem domain Is very well understood, or If actions In It 

are basically Independent, other techniques are simpler and 

much better. 

Furhtermore, It should be stressed that 

the debugging methods of the program are quite naive In the 

context of a real (I.e., non-game) Interactive system. It 

Is almost certain that all of the techniques described here 

would have to be shored up with procedures based on 

knowledge of the problem domain (see  U.5).   Remember  that 



Page 12U 

the basic "smarts" of my system Is In the exploration of the 

simulation history. In real life, this exploration phase Is 

usually preceded by some knowldgable guess work on the part 

of the debugger: almost all expert human debuggers 

(programmers, consultants^tc.) star: their exploration for 

a bug with a good preconceived notion of the nature of the 

bug. This "notion" comes from the utilization of long 

experience about what kind of bugs are attached to what kind 

of problems; most debuggers know that only one or two things 

could possibly cause a bug at any given time In their 

exploration. No one yet know., how to encode this key 

experiential knowledge Into a computer program. Certainly, 

no attempt has been made in this thesis. 

Thus, the program presented here, when 

viewed only as a general debugging technique, should be seen 

as part of a larger system: it fits in after an Initial 

"guesswork" phase (as one of several possibly applicable 

techniques) and just before a "weeding out" ph^se which 

makes thorough use of knowledge in the problem domain to 

narrow dov/n the choice of possible bugs. 

The model-debugging needs of an 

automatic pro^-ammlng system are somewhat different. Here 

the user is interested in expressing a model of his problem 

to the machine In  such a way that he can be sure that the 

B_*_^a_» .__-_^.,^ ., 



— 

Page 125 

machine understands It properly. Thus, after a phase of 

model specification aid at defIne-tIme (1) , a 

model-debugging system like the one here can come In and 

demonstrate the APS's Idea of the model to the user's 

satisfaction (and help the user overcome any dlcrepancys). 

The slmulate-and-InvestIgate and domain-Independence 

philosophies of my system are well-adapted to this purpose: 

the system can afford to be an expert In Its own modelling 

language and do a great deal of exploration work In vlndlng 

bugs. Furthermore, the user can tolerate a reasonable 

number of program-generated choices of bugs In his model If 

he can be certain of eventual understanding by the APS. 

Therefore, I think that the techniques ur-ed here might find 

direct application In automatic programming. 

Nonetheless, for a debugger to be truly 

useful, whether In an automatic programming or general 

artificial Intelligence environment. It must Incorporate the 

same kind of experiential debugging knowledge found In the 

human expert. This kind of stuff will surely be the basis 

of the next generation of debuggers which are now on the 

horizon. 

(1) See |9| for Protosystem I's "activity expert modules". 

K 



-— 

Page 126 

B I bl lop; raph y 

HI Balzer, Robert, "Automatic Programming", Institute 
Technical Memorandum 1, University of Southern 
California Information Sciences Institute 
Sept., 1972. 

I2|   Boehm, Barry W., "Software and Its Impact: A 
Quantitative Assessment", RAND Study P-k997, 

131 

Ul 

16! 

17 

91 

FOrrAn!:nr/ rayKW;: EUyiJlUi 21 Systems. Wright- Allen, Cambridge, Mass., 1968. 

Galbralth, Jay Rw "Organization Design: An 
Information Processing View", unpublished 
Sloan School of Management working paper 
No. U25-69, MIT, Cambridge, Mass., Oct.,1969. 

Goldstein, I ra  Understand IPP f-Lxed InstrurMnn TurM« 
ffflUAU' PhP thesis, MIT, Cambridge, Mass", S^, 

Gorry  H.A., "The Development of Managerial Models" 
SiflAn Manggepent B^q^, Vol . 12, No. 2, Winter,' 

fifihfil. PhD Thesis, MIT, Cambr I dge, MJTT, Ap7l 1 , 

Little, John DC., "Models and Managers: The Concept 
Pf a Decision Calculus", unpublished Sloan School 
or Management working paper No. «»03-69, MIT 
Cambridge, Mass., June, 1969. ' 

Martin, William A., "interactive Design In Proto- 
system I', Project MAC Automatic Programming 

August   97T      NO- *'   M,T' Cambr,d^' Mass., 



Papo 127 

10|  Martin, WllUam A. and Pand B. Krumland, "MAPL, A 
LanKua^e for Describing Models of the World", 
Project MAC Automatic Propramml np, Group Internal 
Memo No. 6, MIT, Cambridge, Mass., Oct., 1972. 

Ill  McKenney, James L., SlmulatIon Gaming for Management 
Development. Harvard Division of Research, Boston, 
Mass., 1972. 

12| MInsky, Marvin L., "Matter, Mind, and Models", In 
Semantic Information Processing (MInsky,ed.), 
MIT Press, Cambridge, Mass., 1968, pp.i*25- «»32. 

13|  Reltman, Julian, Computer  Simulation Applications. 
Wlley-lntersclence. New York, N.Y., 1971. 

I%|  Rockart, John F., "Model-Based Systems 
Analysls--A Methodology and Cas^ Study", 
unpublished Sloan School of Management working 
paper No. U15-69, MIT, Cambridge, Mass., Sept.,1969. 

15|  Rustln, Randall (eg.). L'ebugglng Techniques In Lar^P 
Systems. Prentice-Hall, Inc., Englewood Cliffs, 
N.J., 1971. 

16|  StogdMl, Ralph M. (ed.), lh£.  Process aJL Model- 
ßulHJPK in iht Behavioral Sciences. Ohio State 
University Press, 1970. 

17|  Sussman, Gerald J., "The FINDSPACE Problem", VISION 
FLASH No. 18, Al Lab Vision Croup, MIT, Cambridge, 
Mass., Aug., 1972. 

18|  Sussman, Gerald J., A Coroutatlonal Model £f Ski 11 
Acquisition. PhD Thesis, MIT, Cambridge, Mass., 
Aug., 1973. 

19|  Sussman, Gerald J. and Drew V. McDermott, "Why Conniving 
Is better than PLANNING", Al Memo No. 255A, Al Lab, 
MIT, Cambridge, Mass., April, 1972. 

20|  Sussman, Gerald J. and Drew V. McDermott, "The Connlver 
Reference Manual", Al Memo No. 259, Al Lab, MIT, 
Cambridge, Masr., May, 1972. 

21|  Wlnograd, Terry, PrPCCdurttS AS d Representation fsiL üälä. 
la d Computer Procrar» f££ Understanding Natural 
Language. PhD Thesis, MIT, Cambridge, Mass., Feb., 
1971. 



I ""■"■  " "■ '■ ' '    "  '' ' ' '■   ' 

Page   128 

Appendix  A 

The following Is excerpted from the 
article "Business Cames--Play One!" by G.R. AndlInger In the 
Harvard Business Review for March-April, 1958 ( 0 The 
President and Fellows of Harvard UnIvers'ty)--It s 
reprinted  by  permission. 

It serves as an example of the kind of 
business games at which the program (and MSL) are directed. 
An MSL model of the game described here appears In Appendix 
B. 



. M«.».ll  . ■ 

Page  129 

Business  Games--Play  One! 

Basic  Objectives 

Games are as old as man. Usually/ their 
basic objective Is entertainment. The Business Management 
Game, however, alms not at entertainment, but at learning. 
Other differences between It and a game like Monopoly, for 
example,   are: 

--The   degree  to which   It   approaches   reality. 

--The       degree       to       which        the players' 
experience,     judgment,     and  sklll--as  opposed   to  luck-- 
Influence   the  outcome. 

If any business game Is to serve a pui oose beyond 
that of a fascinating toy , there must be some transfer of 
learning from the game situation to reality. While there 
probably Is some such transfer from playing a generalized 
business game that mirrors "any company" and not a 
particular firm, an executive could derive Infinitely 
greater benefit from a game that permits him to practice 
guiding the destiny of his own company or one In his own 
Industry--whlch unfortunately. Is unavailable at this early 
stoje of business gaming. The success of specific war 
games, which the military has been using for years to 
simulate combat situations for training officers, however, 
holds great promise for similar applications In business In 
due  course. 

The Business Management Game Is a case 
In point. We started It In 1956 with the Idea of applying 
war-gaming techniques to business. In the course of the 
year we tested, modified, and retested the game many times 
to develop a fine balance between realism and playablllty. 
The more closely a game resembles reality, the more 
cumbersome It becomes--unt 11 It Is no longer playable. 
Hence, there Is a need to compromise. Also, we designed 
the game to be relatively stable. No extreme strategy can 
result In sudden success; yet players can gain outstanding 
success If they are good enough--or bankruptcy If they are 
not careful. 

The game Is partly deterministic and 
partly probabilistic. Some results are determined directly 
by the action of the players; others are, to varying 
degrees, subject to chance or probability. The weight of 
the elements of  the  game   Is  such   that   the   longer     the     game. 



r™^—" 

Pa^e  130 

the  smalller  the   Influence  of   luck. 

Rules  of   Play 

In this section 1 shall pjve a hrlef 
general description of each Ratre element and the specific 
values/ rules and probabilities that define each element In 
quantitative terns. Instructions for the umpires are 
Included at each point; but remember that they should not be 
given to the players. 

The Market 

The market Is made up of 2U customers. Each 
customer's potential Is different; In any one time period, a 
few customers are not buying any units, while others may buy 
four or five units (at $10,000 per unit) JL£ a salesman Is 
able to make a sale. 

The market Is dynamic, so the customer 
potentials change. If the market Is growing, they change 
upward; should the market be hit by a recession, however, 
they may drop drastically. The long-term trend of the 
market Is announced to the players; short term fluctuations 
are not. If a company Is Interested In finding out what the 
total market potential Is In any time period, a $2000 
expenditure  for  market  research will buy this Information 
from the umplres. 

The 21» customers dlvMe geographically 
Into four regions on the game board, each region containing 
six accounts. This geographical division allows the company 
to do local advertising (see the section on "Advertising the 
Product") and conduct market research In o- 1y one region at 
a time. Such market research, which tells a company the 
potential of each customer In the region and permits the 
pinpointing of the direct selling effort (see the section on 
"Marketing the Product"), may be obtained by paying the 
umpires $30,000 for  "staff work." 

In  addition  to  the  separation   Into 
geographical  regions, the market breaks down Into one rural 
and two urban markets.  The significance of this distinction 
Is that In an urban market, where a salesman can make more 
calls  per  day,  he has two chances of making a sale during 
each time period, while In the rural market he has only  one 
chance. 

If     at     the     end     of     a     year    a  company 
desires   to  find  out  what  portion  of   the   total   market   It     has 
been       able       to     capture.     It     may     but     a     share-of-market 

■ 



Page 131 

Information from the umpires for $2000. 
The umpire should: 

(1) Ktep a list of all current account potentials. 

(2) Distribute a total customer potential, which 
comes to $360,000 at the beginning of the game, at random to 
the 21* customers as follows: 

1 account $1*0,000 
3 accounts         30,000 
5 accounts 20,000 
13 accounts        10,000 
2 accounts 0 

(3) Depending on the economic climate determined 
In advance, change these starting potentials as the game 
progresses as follows: 

—For slow growth, chane one account each quarter 
at random. Move ahead on the random number table 
until a number between 01 and 2U appears, then add 
$10,000 to the potential of that account number. 

--For faster market growth, change two or three 
accounts In the same mannner as above for each 
quarter. 

—For a depression, change half or all of the 
accounts to zero for one or more quarters. 

(U) If a company decides to buy market Information 
(total potential, market research, or share of market), 
write the Information on a slip of paper and pass It to the 
company. 

Marketing the Product 

Units are sold by salesmen, who call on 
the 2U accounts In the market. In an urban market a 
salesman may make two calls per quarter; and In a rural 
market, only one. 

In the presence of an umpire, the sales 
manager of a company points to the accounts he wants to call 
on. The umpire will tell him, after examining the random 
number table, whether  a  sale  Is made or not.  How many 



Page 132 

units are sold to a customer will depend on competitive 
action. The completed decision form, »-eturned to the 
company at the end of the particular period, contains the 
actual sales results by accounts. 

Whenever a salesman has two calls, he 
must make the second call on a any of the three to eight 
accounts adjacent to the flrsc square called on; that Is, he 
may not jump accross territories. If no sale Is made on the 
first call, he may, of course, call on the same account 
again during the same quarter. Furthermore, there Is no 
limit to the number of salesmen who may call on the same 
account In one time period. Between quarters, salesmen may 
be moved to any accounts that the company wishes to cover 
during the next quarter. 

Each time a salesman makes a call, he 
has a certain fixed probability of making a sale. This 
chance of making a vale may be Increased In one of three 
ways or a combination thereof: 

—A company may Intensify Its direct selling 
effort by having more than one salesman cover one 
account as described above. In such a case. If 
the first salesman makes a sale, the second one 
may move to any adjoining account for his calls. 

—A company may support the salesman's effort by 
advertising (see "Advertising the Product"). 

—A company may attempt to Improve Its product by 
spending more money for a research end development 
effort (see "Research and Development"), 

Every salesman costs $10,000 to hire and 
then $1000 per quarter In slary. (Since the product he will 
be selling Is a high-price, complicated unit. It takes one 
year to train a salesman before he can be sent out Into the 
field.) There Is a possibility that a salesman will 
resign. In which case the umpire Informs the company of this 
loss. 

The umpire should have the following 
Instructions for marketing: 

(1) Each period there Is a S% chance of loss for 
each salesman. Move ahead on the random number table as 
many numbers as the company has salesmen; If one or more of 
these numbers Is .05 or less, the company loses one or more 
salesmen. 

(2) In an urban market, allow two calls per 



Page 133 

quarter; In a rural market, only one call 

(3) A salesman always has a 2S% chance of making a 
sale. For each call, examine the next number on the random 
number table. If the number Is 25 or less, then a sale has 
been made; If It Is 26 or more, no sale Is made. 

Advertising the Product 

Product advertising In a.iy quarter 
Increases the salesmen's chances of amklng a sale. It 
covers only the region or regions (1,11,111, and IV on the 
game board) that the company designates, and 
the current quarter only. Advertising 
page, and a company may buy up to five pages 
In any region In any quarter. 

Here are the umpire's Instructions: 

Is effective In 
costs $3000 per 
of  advertising 

For each sales call within the reglon(s) In which 
the company has advertised, go to the next number In the 
random number table and determine whether or not there Is a 
sale according to the probabilities In the following table. 
If the number Is the same or below the probability 
percentage, a sale Is made. 

Pages Amount ProbabllIty of 
0 0 25| 

$3,000 ?9 
6,000 35 
9,000 U2 
12,000 1*8 
15,000 52 

a sale 

Research  and  Development 

If ü compa 
product. It gains a competlt 
research and development have 
achieve a product Improvement, b 
yield results In a relatlvel 
research effort per quarter cost 
Invest  more  than   that   In  multlpl 

The        umpire 
Immediately    when     Its     research 
produced  results,   and  all   units 
that       quarter    are     considered 
Improvement.     To  find  out   the  ex 

ny    can    develop     a   superior 
Ive       advantage. Usually, 

to be fairly continuous to 
ut a "crash program" may 
y short time. The minimum 
s $10,000, but a company may 
es    of  $10,000. 

notifies       the company 
and  development   program has 

scheduled  for  production     In 
to    be    equipped     with     the 

tent   to which  customers    wll 

MMMB 



•mm^mm 

1 
Rape 13!» 

prefer  an  Improved  product,  $5,000 of  market  research 
(obtained from the umpires) Is needed. 

Of course, these ground rules can be 
altered to fit a company's situation more closely--just as 
the ground rules for other aspects of the Business 
Management Game can. A company manufacturing equipment for 
railroads may well want to use different units of research 
expenditure than would a company making dies for plastic 
products. The length of time necessary to get results from 
research also varies greatly from company to company, as 
Joes the cost of research to measure customer reactions to 
new products. These and other rules can--and In many cases 
should--be tailored to the realities of the Industry. 

The  umpires will tell a company as soon 
as a competing team Introdcces an Improved 
market.   The  players  can  then counter 
marketing effort  or  a  crash  research 
program. 

If a company Is Interested In finding 
out the total Industry research and development expenditures 
for the past year, such Information Is available from the 
umpires for $1,000. 

In addition, the umpires should: 

produce In the 
with a stepped-up 
and  development 

(1) Maintain a cumulative account of each 
company's expenses. After each break In continuity (a 
quarter without any R ä D expenditures) and after each 
product Improvement, start the accumulation over again. 

(2) Make appropriate revisions of the probability 
of Improvement. The cumulative dollar amount spent on 
research and development determines the chaices a company 
has for obtaining a product Innovation. Examine the random 
number table; If the next number Is the same as or below the 
probability percentage, an Improvement Is achieved. 

Cumulative amount   Probability of Improvement 

$10,000 
20,000 
30,000 
l»0,000 
50,000 
60,000 
70,000 
80,000 
90,000 
100,000 and over 

0% 
0 
0 
2 
k 
1 
11 
15 
18 
20 

-- 



Page 135 

product, 
li 
I 

(3) Whenever 
Increase 

a company achieves an   Improved 
roduct. Increase all Its sales probability percentages by 
0. For example. If Company A has an Improved product, this 
s the result: 

ProbabllIty of sale 
Old product 25% 
Improved product +10 

35% 

If Company A spends $6000 on advertising In one 
region ÄQd has an Improved product, this Is the result In 
that region: 

ProbabllIty of sale 
Old product with 
two pages of advertising     35% 
Improved product +10 

U) 
products on 
three. 

(5) 
Improvements 
achieved any, 
by 20. 

As soon as al1 three 
the market,  cancel 

U5% 

companies have  Improved 
the premium of 10 for all 

If one company achieves two product 
before one or both of Its competitors have 
Increase all Its sales probability percentages 

Increasing Production 

must build 
5 units each 
production 
Increment wl 

capacity as 
Construction 
only after 
In progress" 
are not al 
capacity. 

The Initial 
costs $150,000, an 
quarter.  From the 
lines for $30,000 
11 Increase the max 

A company 
soon  as  It de 

time Is nine month 
completion may the 
for the new produc 
lowed to sei 1  or 

plant which each company 
d has a maximum throughput of 
n on a company may add other 
each. But each such $30,000 
Imum throughput by 5 . 
must pay for Increased 
cldes to start construction, 
s (three time periods), and 
first unit be put Into "work 

tlon line.   The companies 
otherwise dispose of excess 

The total lead time In producing units 
s plant Is six months. First, production Is 
this Involves no financial outlay.  Then  In 

In a company' 
scheduled, and 
the next quarter units are put Into "work In progress" and 

- ■   



Page 136 

must be paid for. In the subsequent quarter these units 
come off the production line , are added to Inventory, and 
may be sold. 

Total production cost contains a fixed 
cost and a variable element. The fixed cost Is Incurred 
each quarter, regardless of how many units are produced. At 
a maximum capacity of five units per quarter, the fixed cost 
Is $6000, and the variable cost per unit Is $3000. As 
capacity Is Increased by additional production lines, fixed 
costs rise and the variable cost per unit decreases. If a 
company, prior to adding a line, wants to know the exact 
costs It will Incur at the next level of capacity. It can 
get that Information from the umpires for $2000, but 
otherwise the umpires will Inform the company what 
production costs are when the new line goes Into production. 

Units are added to Inventory at actual 
cost. When a unit Is sold, however. It Is deducted from 
Inventory at the average cost ( total Inventory Investment 
divided by number of units In Inventory). 

rhe umpires should calculate the 
production costs at various capacity levels as follows: 

Max. capacity Total unit cost  Fixed cost Variable cost 

5 
10 
15 
20 
25 

FInanclal 

$U,200 
3,600 
3,000 
2,1*00 

1,800 

per quarter 
$6,000 
U,U00 
22,500 
28,800 

31,500 

per unit 
$3,000 
2,200 
1,500 
1,000 

600 
Management 

capital  I 
with $U00, 
earnings, 
skill with 
In harmony 

at $10,000 
Increased 
board an a 
space In 
this symbo 
It reache 
pressure I 
hence the 

receivable 

The rru tagement of a company's available 
s of critical  Importance.   Each company starts 
000 capital  and grow only through  reinvested 
Profitability will be In direct relation to the 

which the various parts of the business are  kept 
with each other to achieve sound growth. 

The price per unit of product Is fixed 
When a sale Is made,  accounts  receivable are 

by the total amount of the sale, and on the game 
ccounts receivable symbol Is placed on  the fifth 
the "accounts receivable" column.  Every quarter 

1 Is moved up one space until after four quarters 
s the top space and becomes cash. Competitive 
n the Industry forces the extension of credit; 
one year collection lag. 

If a company Is short of cash, accounts 
may be factored to get cash  Immediately.  The 

mmmm mae 



Pase 137 

cost of doing this Is 20% of the amount factored. 

     ■■-..-. ■ I^^MBIMMi^^^^^M 



Page 138 

Appendix B 

The following Is an MSL model of parts 

of the game (for ons. "region") described In Appendix A--as 

seen from the point of view of a player wishing to 

Investigate the game and see the effects of various 

strategies. It Is presented here as an Illustration of the 

use of MSL. 

(•ACTIVITY HIRING 
(*PREREQUISTITES (♦PRESENT (1000 CASH))) 
(♦SCHEDULE ON CALL) 
(♦PRIORITY 2) 
(♦OUTPUT (SOME TRAINEE)) 
(♦TAKES 0) 

) 

(♦ACTIVITY TRAINING 
(♦PREREQUISITES 

(AND (♦PRESENT (1000 CASH)) 
(♦PRESENT (SOME TRAINEE)))) 

(♦TAKES 3) 
(♦OUTPUT (SOME SALESMAN)) 

) 

(♦ACTIVITY URBAN-CALL 
(♦PREREQUISITES 

(AND (♦PRESENT (ASSIGNED 
(SOME SALESMAN) 
(SOME URBAN-CUSTOMER)) 

(♦PRESENT (500 CASH)))) 
(♦TAKES .5) 

) 

(♦ACTIVITY RURAL-CALL 
(♦PREREQUISITES 

(AND (♦PRESENT (ASSIGNED 
(SOME SALESMAN) 

Ml 



Pago 159 

(SOME RURAL-CUSTOMER))) 
(♦PRESENT (1000 CASH)))) 

(•TAKES 1) 
) 

(«EVENT QUITTING 
(•CONDITIONS QUITTING-PROBABILITY) 
(♦ACTIVITIES (SALES-CALL) 

(♦CANCEL) 
(♦REMOVE (THAT SALESMAN))) 

(♦ACTIVITIES (TRAINING) 
(♦CANCEL) 
(♦REMOVE (THAT TRAINEE))) 

) 

(♦ACTIVITY ADVERTISING 
(♦PREREOUISITES (*PRESFNT (3000 CASH))) 
(♦SCHEDULE ON CALL) 
(♦OUTPUT (1 PAGE-OF-ADVERTISING)) 
(♦PRIORITY 3) 
(♦TAKES 1) 

) 

(♦ACTIVITY R&D 
(♦PREREQUISITES (♦PRESENT (10000 CASH))) 
(♦TAKES 0) 
(♦SCHEDULE ON CALL) 
(♦OUTPUT (10000 R&D)) 

) 

(♦EVENT PRODUCT-IMPROVEMENT 
(♦CONDITIONS P-I-PROBABILITY) 
(♦ACTIVITIES (R*P) 

(♦OUTPUT (1 PRODUCT-IMPROVEMENT))) 
) 

(♦ACTIVITY PRODUCT-INITIATION 
(♦PREREQUISITES (♦PRESENT 

(1 PRODUCTION-LINE))) 
(♦TAKES 1) 
(♦OUTPUT (5 UNITS-IM-PROGRESS)) 

) 

(♦ACTIVITY PRODUCTION-COMPLETION 
(♦PREREQUISITES (♦PRESENT 

(5 UNITS-IM-PROGRESS))) 
(♦TAKES 1) 
(♦OUTPUT (5 UNITS)) 



Page UO 

) 

(*ACTIVI TY PRODUCTION-LINE-CONSTRUCTION 
(♦PREREQUISITES (»PRESENT (30000 CASH))) 
(♦TAKES 3) «on/^; 

(♦OUTPUT (1 PRODUCTION-LINE)) 

(•ACTIVITY FACTOR 
(♦PREREQUISITES CPRESENT (5000 A-R))> 
(♦TAKES 0) 
(♦OUTPUT («»900 CASH)) 
(♦SCHEDULE ON CALL) 

(♦EVENT SALE 
(♦CONDITIONS SALES-PROBABILITY) 
(♦ACTIVITIES (SALES-CALL) 

(♦OUTPUT (10000 A-R))) 

(♦FUNCTION SALES-PROBABILITY 
(♦ARGUMENTS (PAGE-OF-ADVERTISING)) 

(PRODUCT-IMPROVEMENT)) 
(♦RETURN 

) 
)) 

(♦SUM-UP 
.25 
(AD-FUNCTION 
PAGE-OF-ADVERTISING) 

(TIMES .10 
PRODUCT-IMPROVEMENT) 

(♦FUNCTION AD-FUNCTION 
(♦ARGUMENTS (PAGE-OF-ADVERTISING)) 
(♦RETURN 

(♦TABLE (PAGE-OF-ADVERTISING 
♦RESULT) 

(0 0) (1 .01») (2 .10) (3 .17) 
) (» .23) (5 .27))) 

(♦FUNCTION P-! PROBABILITY 
(♦ARGUMENTS (R&D)) 
(♦RETURN (»TABLE (RAD ♦RESULT) 
((LESSP RAD 1*0000) 0) (U0000  02) 
(50000 .01») (60000 .J7) (70000 .11) 
(80000 .15) (90000 .18) (100000 .20) 

MMHfe 



Pa^e   Ul 

((GREATERP   R&D   100000)   .20))) 


